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Introduction

In this work, we will study the following notion.

Definition. Two smooth embeddings Sn ↪→ Wm are said to be exotically knotted if they are
isotopic through ambient homeomorphisms, but not through diffeomorphisms.

More specifically, we will focus on embeddings of surfaces in 4-manifolds. In this case, we
are usually a bit sloppy with nomenclature and refer to the embedding S2 ↪→ W 4 as the surface
S. In particular, we say that two surfaces S1, S2 are exotically knotted in W 4 when their
embeddings are.

Some results concerning this are known for quite a while. First, there are some rigidity
statements.

Theorem ([1]). All biregular embeddings C ↪→ C2 are biregularly equivalent. In particular,
there is no exotically knotted C birregularly embedded in C2.

Theorem ([10]). Let W 4 be a closed, simply-connected Kähler surface. Then, any two smooth,
closed complex curves that are homologous1 are also smoothly isotopic (through complex curves).

Theorem ([17]). There are no exotically knotted complex algebraic2 curves in C2 with the
topological type of a surface-with-1-hole.

For a general topological type, this is an open problem. On the other hand, there are some
known flexibility results.

Theorem (Freedman, 1985 and [13]). There exist exotically knotted R2 and R2 ∖ D̊2 in R4.

Theorem ([9]). There exist exotically knotted closed non-orientable surfaces in S4 and R4.

Interestingly, the orientable case is still an open problem.

Theorem ([18]). There is a pair of exotically knotted disks properly embedded in B4.

The rigidity exhibited by the algebraic setting and the flexibility shown in these last results
might lead one to ask what happens when we reach a compromise between algebraic and smooth
embeddings. Kyle Hayden recently answered this question when the compromise is holomorphic
embedding.

Theorem A ([17]). There are infinitely many pairs of proper holomorphic curves in C2 that
are exotically knotted.

One of the main goals of this work is to present Hayden’s construction in detail. Along this
path, we will also present some remarkable results. In particular:

Theorem B ([17]). There is a pair of exotically knotted disks properly embedded in B4 relative
boundary. 3

We will present a proof of this using corks (cf. Definition 2.0.1). However, later on we will
use a different method to prove a generalization of this result (see Theorem E below).

Theorem C ([17]). Any compact, connected, orientable surface with boundary (other than the
disk) admits a pair of smooth, proper embeddings in B4 that are exotically knotted. Furthermore,
they remain exotically knotted when restricted to the interior.

1This is automatic if they are topologically isotopic
2i.e. given as the zero-locus of a complex polynomial
3The term relative boundary simply means that the ambient topological isotopy fixes S3 pointwise and that

there is no ambient smooth isotopy fixing S3 pointwise. Hence, this result is weaker than Hayden’s result above.
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The idea behind the proof of these two results is similar in essence. First, the surfaces are
proven to be topologically isotopic using a recent result from Conway and Powell (cf. The-
orem 3.1.3). Then, the smooth isotopy is obstructed by distinguishing facets of the double
branched covers along them.

The next step towards Theorem A is to realize these surfaces as compact pieces of complex
algebraic curves. This will be done simply by realizing them as positively braided surfaces and
then use Rudolph’s work ([23]), which guarantees that such surfaces are smoothly isotopic to
compact pieces of complex algebraic curves.

Finally, Hayden’s construction of exotically knotted complex holomorphic curves will be
completed by locating a suitable Fatou-Bieberbach domain Ω ⊂ C2 and use it to reembed these
algebraic surfaces holomorphically into C2.

On the other hand, using these same techniques, we extend the construction in several
directions. First, we generalize Theorem B by constructing arbitrarily large tuples of pairwise
exotically knotted surfaces in B4 relative boundary. We do this for any compact, connected
surface, even the non-orientable ones. More precisely, we show:

Theorem D. Let n ∈ N. Any compact, connected surface with boundary admits a 2n-tuple of
smooth, proper embeddings in B4 that are pairwise exotically knotted relative boundary.

Next, we generalize Theorem C to non-orientable surfaces. Namely, we show:

Theorem E. Any compact, connected, non-orientable surface with boundary admits a pair
of smooth, proper embeddings in B4 that are exotically knotted. Furthermore, they remain
exotically knotted when restricted to the interior.

Finally, we will also be able to extend Theorem C to larger tuples of exotically knotted
embeddings. This construction, though, does not work in the non-orientable case. We prove:

Theorem F. Let g ≥ 0, h ≥ 1 ∈ N not both equalities. The compact, connected, orientable
surface with boundary with-h-holes and genus g admits a (g + 1)h-tuple of smooth, proper em-
beddings in B4 that are pairwise exotically knotted. Furthermore, they remain exotically knotted
when restricted to the interior.

This work is organized as follows. In Chapter 1, we introduce the basic definitions and
results regarding handlebodies and Kirby calculus.

In Chapter 2, we switch topic to introduce contact structures and Legendrian knots. The
goal of this is to give sufficient and necessary conditions for a 4-manifold to admit a Stein
structure, as the Stein setting will allow us later on to obstruct surfaces from being smoothly
isotopic. We also define corks and use the rigidity of Stein structures to prove that the positron
cork (cf. Figure 2.1) is indeed a cork.

In Chapter 3, we describe Hayden’s construction. Namely, we show Theorems A, B and C.
Finally, in Chapter 4, we extend the construction and prove the remaining theorems D, E

and F.
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Chapter 1

Preliminary topics

In this chapter, we present the fundamental tools for the development of the next chapters.
We start in Section 1.1 by giving basic results concerning handle decompositions in general
dimension.

In Section 1.2, we specialize the theory of the previous section to the 4-dimensional case.
We introduce Kirby diagrams, explain how to manipulate them and how to extract information
from them.

In Section 1.3, we describe how to compute Kirby diagrams of branched covers.

1.1 Handle decompositions

In this section, we define handle decompositions and state some fundamental results about
them.

Definition 1.1.1. Let 0 ≤ k ≤ n. An n-dimensional k-handle is the manifold with corners
hk,n = Dk ×Dn−k. The integer k is called the index of the handle. Furthermore, the following
subsets of hk,n are defined:

• Core: Dk × 0

• Attaching sphere: Sk−1 × 0

• Attaching region: Sk−1 ×Dn−k

• Cocore: 0×Dn−k

• Belt sphere: 0× Sn−k−1

• Belt tube: Dk × Sn−k−1

The following figures depict a 2-dimensional 1-handle and its anatomy.

Figure 1.1: Core, attaching sphere and attach-
ing region.

Figure 1.2: Cocore, belt sphere and belt tube.

Definition 1.1.2. Let M be an n-manifold with boundary. Attaching a k-handle to M along
an embedding φ : Sk−1×Dn−k ↪→ ∂M consists of gluing a k-handle hk,n to M along φ to obtain
the resulting manifold M ∪φh

k,n. After canonically smoothing the corners, we may assume that
this new manifold is smooth.

5
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In fact, since we will only care about the diffeomorphism type of the manifolds, by the
Isotopy Extension Theorem, the embedding φ will only matter up to isotopy. By the Tubular
Neighborhood Theorem ([15]), we may specify the (isotopy class of the) embedding φ : Sk−1 ×
Dn−k ↪→ ∂M above by the following two pieces of data:

(1) an embedding φ0 : S
k−1 ↪→ ∂M with trivial normal bundle, and

(2) a framing f of its normal bundle, i.e. an identification of νφ0(S
k−1) ⊂ ∂M with Sk−1×Rn−k.

Notice that two trivializations of the bundle Sk−1 × Rn−k → Sk−1 are related by a map
Sk−1 → GL(n − k). It follows that two isotopy classes of trivializations are related by an
element of πk−1(GL(n − k)) ∼= πk−1(O(n − k)). Hence, the second piece of data above is
determined (non-canonically) by an element of πk−1(O(n− k), id).

The groups πi(O(m)) are not known for all values of i and m, but the low-dimensional cases
have been computed. We will particularly care about the column n = 4 of Table 1.1. It is worth
mentioning that the fact that π0(O(n− 1)) ∼= Z2 will not matter to us, as we will only consider
orientable manifolds. In particular, there will be a unique way to attach 1-handles (provided
∂+M is connected).

k⧹n 1 2 3 4

1 - Z2 Z2 Z2

2 - - Z2 Z
3 - - - 0
4 - - - -

Table 1.1: Values of πk−1(O(n− k)).

It is the fundamental result of Morse Theory, that any smooth compact manifold can be
described by handle attachments. We now formalize this statement. Let M be a compact
smooth n-manifold with boundary ∂M = ∂+M ⊔ ∂−M . If M is oriented, choose orientations
for ∂±M so that ∂M = ∂+M ⊔ ∂−M with the induced boundary orientation.

Definition 1.1.3. A handle decomposition of M (relative to ∂−M) is a diffeomorphism ϕ :
M → X, where X is a manifold obtained from I × ∂−M by attaching handles to its upper
boundary and ϕ(∂−M) = {0} × ∂−M .

Definition 1.1.4. A smooth function f : M → [0, 1] is Morse if

• f−1(0) = ∂−M , f−1(1) = ∂+M , and

• every critical point is non-degenerate.

For a non-degenerate critical point x of f , define its index as the number of negative eigenvalues
of the Hessian of f at x and denote it by ind(x).

Lemma 1.1.5 ([22], §3). Let f : M → [0, 1] be a Morse function. Then:

(i) If f has no critical points, then M ∼= ∂−M × I.

(ii) If f has exactly one critical point of index k, then M ∼= (∂−M × [0, 1])∪φ hk,n attached to
the upper boundary.

Lemma 1.1.6 ([22], Corollary 6.7). Morse functions are dense in the set of smooth functions.

Corollary 1.1.7. M admits a handle decomposition relative to ∂−M .
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Proof. By the previous lemma, there exists a Morse function f : M → [0, 1]. Since M is
compact and non-degenerate critical points are isolated, f has a finite number of them. Repeated
application of Lemma 1.1.5 yields a handle decomposition of M .

Having discussed the existence of handle decompositions, our next goal is to give rules to
simplify them, i.e. to sort the handles by increasing index, to cancel them whenever there is
redundancy, etc. We record these fundamental rules.

Proposition 1.1.8 ([21], Theorem 4.8). The handle decomposition can be chosen so that the
handles are attached in order of increasing index. Handles of the same index can be attached
in any order (or simultaneously).

From now on, we will implicitly be considering only handle decompositions satisfying the
above property.

Proposition 1.1.9 ([21], Theorem 5.4). If the attaching sphere of a k-handle intersects the belt
sphere of a (k − 1)-handle transversely in a single point, then these handles can be cancelled.

Later on, we will see examples on how to use this in dimension 4.

To end this section, we discuss how to compute π1 and H∗ from a handle decomposition.
Since k-handle attachments are just thickened k-cell attachments, a handle decomposition yields
a CW decomposition. In particular, the fundamental group and the homology are computed as
in the case of CW complexes.

Theorem 1.1.10 ([14], computation of π1). Suppose M is orientable, has ∂−M = ∅ and
has a handle decomposition with a unique 0-handle. Let M1 be the 1-skeleton of the handle
decomposition, i.e. M1 = 0-handle ∪ m 1-handles. Fix a point ∗ in the 0-handle. Let ai be the
loop based at ∗ going around the i-th 1-handle once. Then, π1(M1, ∗) is freely generated by the
loops a1, . . . , am. Furthermore, a presentation of π1(M, ∗) is given by

π1M ∼= ⟨a1, . . . , am|r1, . . . , rl⟩,

where rj ∈ π1M1 is the homotopy class of the attaching sphere of the j−th 2-handle (i.e. a word
in a1, . . . , am).

Now we describe how to compute the homology H∗(−;Z) of an arbitrary compact orientable
manifold pair (M,∂−M) given a handle decomposition of M relative to ∂−M . Denote by
Mk the k-skeleton of M . Set M−1 = ∂−M . Define Ck = Hk(Mk,Mk−1;Z) and ∂k : Ck →
Ck−1 as the connecting homomorphism in the long exact sequence in homology of the triple
(Mk,Mk−1,Mk−2).

Lemma 1.1.11 ([21], 3.15 and 7.4). The following properties are satisfied:

(i) Hi(Mk,Mk−1;Z) ∼=

{
Z[{k − handles}], i = k

0, else
. In particular, Ck

∼= Z[{k − handles}].

(ii) (C∗, ∂∗) is a chain complex and Hk(M,∂−M ;Z) ∼= Hk(C∗) for every k.

Hence, in order to compute the homology of the pair (M,∂−M), it will suffice to understand
the differential ∂k : Ck → Ck−1.

Theorem 1.1.12 ([21], 7.3). (Computation of H∗) Let {hki } be the collection of k-handles in
a handle decomposition of M relative to ∂−M . Fix an orientation of M and an orientation on
the core and the cocore of each handle that makes the three of them compatible. Let λij be the
intersection number of the attaching sphere of hki and the belt sphere of hk−1

j in ∂+Mk with the

induced orientations. Then, the matrix of ∂k : Ck → Ck−1 with respect to the bases {hki } of Ck

is (λij).
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1.2 Kirby calculus

The goal of this section is to define Kirby diagrams and state rules for both manipulating them
and for extracting data such as their fundamental group, homology and intersection form. From
now on, unless otherwise stated, all manifolds will be assumed to be orientable and of dimension
4.

We begin with a simple, yet very useful observation. With the notation of the previous
section, suppose we attach a 1-handle to a manifold M . By Proposition 1.1.9, we can further
attach a cancelling 2-handle to obtain a diffeomorphism

M ∪ 1-handle ∪ 2-handle ∼= M.

Thus, attaching a 1-handle is the same as removing a cancelling 2-handle. Notice that the
cocore of such a 2-handle is an unknotted disk in ∂M whose interior is pushed into the interior
of M . Hence, attaching a 1-handle to M is equivalent to removing a tubular neighborhood of
such a disk. This gives a very convenient way to think about 1-handles. In fact, we define:

Definition 1.2.1. A Kirby diagram is a link L = (U1, . . . , Um,K1, . . . ,Kl) in S3 such that

(1) U1 ∪ . . . , Um is an unlink, and

(2) each Kj is a framed knot, i.e. comes together with an integer fj called framing coefficient
of Kj .

Kirby diagrams are supposed to represent a 4-dimensional handle decomposition with a
single 0-handle, m 1-handles and l 2-handles. We interpret them as follows. First, the ambient
space S3 represents the boundary ∂D4 of the 0-handle.

Secondly, each Ui represents a 1-handle attachment in the sense of the observation above.
Indeed, it is a standard fact that any collection of smoothly embedded disjoint disks in S3 is
unique up to isotopy relative boundary. Hence, there is no ambiguity if we avoid drawing the
disks whose interior is pushed into the interior of D4, so we just need to consider the boundaries
U1, . . . , Um of these disks.

Lastly, each Kj represents the attaching sphere of a 2-handle. Recall from Table 1.1 and
the discussion above it, that a 2-handle attachment also requires the additional data of a fram-
ing of the normal bundle of Kj in ∂(D4 ∪ 1-handles) = #mS1 × S2. Since π1(O(2)) ∼= Z (cf.
Table 1.1), the framing is determined by an integer in a (a priori) non-canonical way. More
precisely, we must choose a base framing F0 so that any other framing F is determined by
an integer k relating them. However, since Kj is a knot in S3, there is already a canonical
framing for Kj , obtained by the outer normal field of a Seifert surface for Kj . We may thus
take this canonical framing to be F0 and describe any other framing by the framing coefficient fj .

When drawing Kirby diagrams, we will picture the unknots Ui as black dotted circles. On
the other hand, the knots Kj will have their framing coefficient next to them. The following
are the simplest examples of Kirby diagrams:

0

Figure 1.3: Kirby diagrams for S1 ×D3 (left) and S2 ×D2 (right).
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We now describe the rules we will be using in this work to manipulate Kirby diagrams. We
say that two Kirby diagrams are equivalent if they represent diffeomorphic manifolds. We first
describe handle slides.

Proposition 1.2.2 ([14], §5.1). Let L = (U1, . . . , Um,K1, . . . ,Kl) be a Kirby diagram. Fix a
pair of 2-handles hi, hj attached along Ki and Kj, respectively. The following procedure, called
sliding hi over hj, yields an equivalent Kirby diagram L′:

(1) Fix orientations on Ki and Kj.

(2) Let K̄j be a (close enough) parallel copy of Kj determining the framing fj.

(3) Let K ′
i be the connected sum of Ki and K̄j along some band.

(4) Let L′ be the Kirby diagram L with Ki replaced by K ′
i and the framing coefficient fi replaced

by f ′
i = fi + fj ± 2lk(Ki,Kj), where the + sign is taken if the connected sum respected the

fixed orientations of Ki and Kj. Otherwise, the − sign is taken.

Proposition 1.2.3 ([14], §5.4). Let L = (U1, . . . , Um,K1, . . . ,Kl) be a Kirby diagram. Fix a
pair of 1-handles hi, hj represented by dotted circles Ui, Uj, respectively. The following proce-
dure, called sliding hj over hi, yields an equivalent Kirby diagram L′:

(1) Let Ūj be a (close enough) parallel copy of Uj determining the 0-framing.

(2) Fix a plane separating Ui and Ūj and disjoint from any other dotted circles.

(3) Let U ′
i be the connected sum of Ui and Ūj along some band whose core intersects the plane

once.

(4) Let L′ be the Kirby diagram L with Ui replaced by U ′
i .

Notice that sliding a 1-handle over another is (up to some details) the same procedure as
sliding a 0-framed 2-handle over another. One can also slide a 2-handle over a 1-handle (cf. [14]
§5.4), but we will not use it in this work.

We now describe how handle cancellation affects Kirby diagrams.

Proposition 1.2.4 ([14], §5.4). Let L = (U1, . . . , Um,K1, . . . ,Kl) be a Kirby diagram. Suppose
that Kj intersects the Seifert disk of Ui in a unique point and no other Kj′ intersects the disk.
Then, the Kirby diagram obtained from L by removing Ui and Kj is equivalent to L.

If some other Kj′ intersects the disk, we can use Proposition 1.2.2 to slide it away so that it
does not intersect the disk anymore. Doing this for every such Kj′ , the intersection condition
of the above Proposition can always be arranged.

In the content of this work, there are plenty of examples of these rules being used.

We now move on to explain how to compute π1, H∗ and the intersection form from a Kirby
diagram. This will mostly follow immediately from Theorems 1.1.10 and 1.1.12.

Proposition 1.2.5. Let L = (U1, . . . , Um,K1, . . . ,Kl) be a Kirby diagram and M be the 4-
manifold it represents. Let Di be the Seifert disk of Ui and fix an orientation on all of them.
Fix also an orientation of each Kj. A presentation of π1M is given by

π1M ∼= ⟨D1, . . . , Dm|r1, . . . , rl⟩,

where rj is the word in D1, . . . , Dm obtained by tracking Kj along its orientation and writing
Di every time Kj intersects Di matching the chosen orientation and writing D−1

i otherwise.
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Remark 1.2.6. For explicit generators of π1M , just consider the loops ai that go around Ui

once, matching the orientation of Di, and do not intersect any other Seifert disk.

Proposition 1.2.7. Let L = (U1, . . . , Um,K1, . . . ,Kl) be a Kirby diagram and M be the 4-
manifold it represents. Let Di be the Seifert disk of Ui and fix an orientation on all of them.
Fix also an orientation of each Kj. Let λij be the (algebraic) intersection number of Di and
Kj. The homology H∗(M ;Z) is isomorphic to the homology of the chain complex

0 −→ Zl φ−→ Zm 0−→ Z −→ 0,

where φ : Zl → Zm has matrix (λij).

Remark 1.2.8. Again, for explicit generators ofH1(M ;Z) we may take the loops ai of the remark
above. We can also visualize explicit generators of H2(M,Z) under certain circumstances.
Suppose Kj does not intersect any disk Di. By the proposition, Kj must represent a generator
of a Z summand of H2(M ;Z). We may realize this generator as follows. Kj admits a Seifert
surface Fj disjoint from the disks Di. Orient it with the chosen orientation of Kj . Push the
interior of Fj into the interior of D4 and cap it off with the core of the 2-handle to obtain a
closed surface F̂j . Orient F̂j with the orientation of Fj . Then, F̂j represents the aforementioned
generator of the Z summand of H2(M ;Z).

Finally, we deal with the intersection form.

Definition 1.2.9. Let L = (U1, . . . , Um,K1, . . . ,Kl) be a Kirby diagram. Pick an orientation
for every Ki. The linking matrix (Qij) of L is the l × l matrix given by

Qij =

{
fi i = j

lk(Ki,Kj), i ̸= j

Proposition 1.2.10. Let L = (K1, . . . ,Kl) be a Kirby diagram with no dotted circles and
M be the 4-manifold it represents. Pick an orientation for every Ki. With respect to the
basis {[F̂j ]} of H2(M ;Z) described in Remark 1.2.8, the matrix of the intersection form QM :
H2(M ;Z)×H2(M ;Z) → Z is the linking matrix (Qij).

Remark 1.2.11. If L contains dotted circles, the corresponding result is true for the knots Kj

that do not intersect any disk Di, i.e. [F̂j ] · [F̂j′ ] = QM ([F̂j ], [F̂j′ ]) = Qjj′ .

1.3 Double branched covers

The goal of this section is to build up a method to compute Kirby diagrams of double branched
covers. We first define branched covers, present some low-dimensional visual examples and then
move on to explain a general method in dimension 4.

Definition 1.3.1. A d-fold cyclic branched covering f : Xn → Y n with branch locus Bn−2

embedded in Y n is a smooth proper map such that

(1) f|X∖f−1(B) : X ∖ f−1(B) → Y ∖B is a d-fold cyclic cover, and

(2) ∀p ∈ f−1(B), there are coordinates around p so that f is

C× Rn−2
+ → C× Rn−2

+

(z, x) 7→ (zm, x).

The integer m is called the branching index of f at p.
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More importantly for our purposes, if d = 2, f : X → Y will be called double branched covering
and the space X will be called double branched cover of Y along B.

Example 1.3.2. D2 covers D2 branched along one point.

D2 D2

z 7→ z2

Figure 1.4: D2 branched along the origin.

Example 1.3.3. Similarly, S2 covers S2 branched along two points.

(z, x) 7→ (z2, x)

S2 S2

Figure 1.5: S2 branched along the poles.

The following proposition, and especially its proof, give a recipe to construct Xn given
(Y n, Bn−2).

Proposition 1.3.4. Given (Y n, Bn−2), a surjective homomorphism π1(Y ∖B) ↠ Zd determines
a unique d-fold cyclic branched cover X of Y along B up to diffeomorphism.

Proof. A surjective homomorphism π1(Y∖B) ↠ Zd determines an index-d subgroup of π1(Y ∖ νB).
By standard covering space theory, this determines a unique d-fold cyclic cover of Y ∖νB. Notice
that an m-fold branched action along F is seen on νF as a map

νF ∼= D2 × F → D2 × F ∼= νF

(z, x) 7→ (zm, x),

The d-fold cyclic branched cover is then obtained by gluing νF back in using the map

S1 × F → S1 × F

(z, x) 7→ (zm, x),

so that condition (2) of Definition 1.3.1 is satisfied. Also, condition (2) determines the gluing
map, so the d-fold cyclic branched cover is unique up to diffeomorphism.

Example 1.3.5. Let us construct double branched covers of D2 along two points. Notice that
π1(D

2 ∖ {x, y}) ∼= Z ∗ Z, and there are different surjections Z ∗ Z → Z2, each of which will
yield a different cover. Let’s say we pick the surjection γx, γy 7→ 1. Following the procedure in
the proof of Proposition 1.3.4, we first remove a tubular neighborhood of the points x, y in D2.
Then, we construct the double cover of D2 ∖ νx ∪ νy associated to the chosen surjection. This
is the top map in Figure 1.7. Finally, we fill the tubular neighborhoods back in to obtain the
bottom map. In particular, this double branched cover of D2 along two points is an annulus.
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(D2, {x, y})

x y νx νy

γyγx

D2 ∖ νx ∪ νy

∼=

γx

νx νy

γy

Figure 1.6: The complement D2 ∖ {νx, νy}.

2 : 1

2 : 1

D2 ∖ νx ∪ νy

(X, {x̃, ỹ}) (D2, {x, y})

X ∖ f−1(νx ∪ νy)

f

x yx̃ ỹ

Figure 1.7: The double cover X∖f−1(νx∪νy) → D2∖νx∪νy (above) and the double branched
cover f : X → D2 (below).

This example is a good representative of the procedure used to construct branched covers
in larger dimensions. Our goal now is to describe the general method we will use to construct
double branched covers of B4 along compact, connected, orientable, properly embedded surfaces
(F 2, ∂F 2) in (B4, S3). We begin by noticing:

Proposition 1.3.6. There is a unique surjective map π1(B
4 ∖ F 2) ↠ Z2. In particular, we

may unambiguously talk about the double branched cover of B4 along F 2, which we denote by
Σ2(B

4, F 2).

Proof. It suffices to check that H1(B
4 ∖ F 2) ∼= Z (integer coefficients are to be assumed unless

otherwise stated), as this is the abelianization of π1(B
4 ∖ F 2) and there is a unique surjective

homomorphism Z ↠ Z2. Consider the Mayer-Vietoris sequence associated to the decomposition
B4 = (B4 ∖ F 2) ∪ νF 2:

H2(B
4) H1(νF ∖ F ) H1(B

4 ∖ F )⊕H1(νF ) H1(B
4)

0 H1(S
1)⊕H1(F ) H1(B

4 ∖ F )⊕H1(F ) 0

= ∼ = ∼ = =

Since the H1(F ) summand on the left gets mapped to the H1(F ) summand on the right under
the identifications we made, we have an isomorphism H1(B

4 ∖ F 2) ∼= H1(S
1) ∼= Z.
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Remark 1.3.7. If F 2 is non-orientable, then the same argument shows that H1(B
4 ∖ F 2) ∼= Z2,

and so in this case, there is also a unique double branched cover.

As the proof of Proposition 1.3.4 and the previous examples suggest, our general method
will begin by constructing the double cover of B4 ∖ νF 2. Computing Kirby diagrams of such
complements is fairly standard and the general procedure can be found in [14], §6.2. Once we
have a Kirby diagram of the complement B4∖νF 2, we can obtain a Kirby diagram of its double
cover using the following:

Lemma 1.3.8. Suppose Y 4 is the 4-manifold with boundary given by the Kirby diagram

E

Figure 1.8: Kirby diagram for Y 4.

where the tangle E is allowed to contain several 1-handles and 2-handles. Let X4 be the
double cover of Y 4 associated to the surjective homomorphism π1(Y ) ↠ Z2 that sends the black
1-handle to 1 and the rest of the 1-handles (if any) to 0. Then, X4 is given by the Kirby diagram

E E

Figure 1.9: Kirby diagram for X4.

The framing coefficient fr(hX) of a 2-handle hX in the latter diagram can be computed via
the formula:

fr(hX) = fr(hY ) + wr(hX)− wr(hY )− k/2, (1.1)

where hY is the 2-handle in Y 4 to which it projects and k is the number of times hY goes around
the black dotted circle.1

Proof. Consider the ”thickened diagram”, which is equivalent to the Kirby diagram in Fig-
ure 1.8:

1Notice that this must be an even number, otherwise there would be no surjective map π1(Y ) ↠ Z2.
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E E∼E ∼

Figure 1.10: Equivalent Kirby diagrams for Y 4. The pink line is a piece of a push-off representing
the blackboard framing.

In the rightmost diagram, we can take the wanted double cover by picturing the action
z 7→ z2 around the black dotted circle:

E E

Figure 1.11: Thickened Kirby diagram for X4. The pink lines are the lifts of the pink line of
Figure 1.10.

Finally, by flattening this last diagram, we obtain:

E E

Figure 1.12: Kirby diagram for X4. The pink lines are the lifts of the pink line of Figure 1.10.

By following the pink lines throughout this process, we get that the blackboard framing lifts
to the blackboard framing plus a negative half-twist every time the 2-handle goes around the
black dotted circle. Hence, we obtain Equation 1.1.

According to Proposition 1.3.4, we now need to fill lifts of νF into the double cover of
B4 ∖ νF . Fortunately, we will be only interested in the double branched cover as a space and
not on the covering map itself, and it turns out that there is a very nice and quick way to do
this.

The idea is the following. Suppose we have a Kirby diagram for Y = B4 ∖ νF 2 and a Kirby
diagram of its double cover X (which we can produce using Lemma 1.3.8). Now, let {h2i , h3j} be

a collection of 2-handles and 3-handles that, when attached to Y , makes us recover B4. Then,
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filling νF into the double cover X simply means attaching lifts of h2i and h3j to X. Hence, if for

example h2i is chosen to cancel a 1-handle h1 of Y , then its lift will cancel a 1-handle lifting of
X lifting h1, because the intersection condition of Proposition 1.2.4 lifts nicely. Similarly, if h3j
cancels a 2-handle h2 of Y , then its lift will cancel a 1-handle of X lifting h2.

As mentioned above, after this handle cancellation, we usually can no longer see the covering
map, but we have a nice simplified Kirby diagram of the double branched cover.

We finish the section and the chapter by computing some useful double branched covers.
Consider the unknotted annulus or Möbius band F 2

n :

n

Figure 1.13: The surface F 2
n . The box represents n positive half-twists.

We regard Fn as a properly embedded surface in B4 by pushing the interior of Fn into the
interior of B4. By realizing the surface as in the left of Figure 1.14, we can easily produce a
Kirby diagram of B4 ∖ νF 2

n .

n

n n+ 1∼

0 0

Figure 1.14: The surface F 2
n (left) and Kirby diagrams of B4 ∖ νF 2

n (right).

Now, using Lemma 1.3.8, we obtain a Kirby diagram of the double cover of B4 ∖ νF 2
n .

By plugging in fr(hY ) = 0, wr(hX) = 0, wr(hY ) = −n − 1, k = 2 in Equation 1.1, we obtain
the leftmost diagram of Figure 1.15. Now, by attaching a cancelling 2-handle and a cancelling
3-handle to the rightmost diagram of Figure 1.14, we recover B4. Hence, in order to obtain
the double branched cover Σ2(B

4, F 2
n), we simply remove the dotted circle and one of the lifted

2-handles. We thus obtain the Kirby diagram on the right of Figure 1.15.

n+ 1

n

n+ 1

n
n

Figure 1.15: Kirby diagram of the double cover of B4 ∖ F 2
n (left) and of the double branched

cover Σ2(B
4, F 2

n) (right).
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Chapter 2

Construction of corks

This chapter is devoted to the construction of the corks we will use in the next chapter. We
start by defining what a cork is.

Definition 2.0.1. A cork is a compact, contractible 4-manifold M , together with a smooth
involution τ : ∂M → ∂M that does not extend to a diffeomorphism M → M . The involution τ
is called the boundary twist.

Remark 2.0.2. Freedman proved that any integral homology 3-sphere bounds some compact,
contractible, topological 4-manifold W 4. Furthermore, W is unique up to homeomorphism (cf.
[2], Section 21.3.2). Since any compact, contractible 4-manifold bounds an integral homology
3-sphere, this implies that the boundary twist τ : ∂M → ∂M does extend to a homeomorphism
M → M . Hence, the definition of cork already hides some sort of exotic behaviour, so it should
not be surprising that they can be used to construct other kinds of exotic phenomena. On the
other hand, this suggests that proving that a certain manifold is a cork is a difficult task, as
one is supposed to obstruct a map from extending to the interior as a diffeomorphism, but not
as a homeomorphism.

Arguably, the most relevant property of corks in the context of low-dimensional topology is
that the smooth h-cobordism theorem in dimension 4 is true up to a cork twist. More precisely:

Theorem 2.0.3 ([4]). Let W 5 be a smooth h-cobordism between compact simply-connected man-
ifolds M4 and N4. Then, W has a compact contractible sub-h-cobordism K5 between compact
contractible submanifolds A4 ⊂ M4 and B4 ⊂ N4 so that W is a trivial h-cobordism outside K.
In particular, there is a diffeomorphism

W ∖ Int(K) ∼= (M ∖ Int(A))× [0, 1],

which induces a diffeomorphism

M ∖ Int(A)
F∼= N ∖ Int(B).

Furthermore, A and B can be chosen to be diffeomorphic via a diffeomorphism g : A → B so

that the composition ∂A
g→ ∂B

F→ ∂A is an involution.

An immediate consequence of this is the following.

Corollary 2.0.4. Any exotic pair of simply-connected 4-manifolds is related by a cork twist.
That is, the second manifold is obtained by removing a cork from the first one and re-gluing it
via its boundary twist.

17
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The pictures below depict examples of corks (without specifying their boundary twists):

0 0

(a) (b)

Figure 2.1: (a) the positron and (b) the Mazur cork.

In the next chapter, we will exploit the exotic nature of corks to produce pairs of exotically
knotted disks in the 4-ball (relative boundary). However, before getting there, this chapter will
deal with the verification that the positron cork above is indeed a cork.

In Section 2.1, we define contact structures on 3-manifolds, Legendrian knots and their
classical invariants. In Section 2.2, we define Stein domains and characterize which 4-manifolds
admit a structure this kind in terms of their handlebodies. We also state an obstruction for
Stein domains that we will use over and over again in the next chapters. Finally, in Section 2.3,
we use all of this machinery to prove that the above Kirby diagrams indeed represent corks.

2.1 Contact structures and Legendrian knots

Definition 2.1.1. A contact structure on an oriented smooth 3 manifold M is a completely
non-integrable oriented 2-plane field ξ. That is, ξ assigns a 2-dimensional subspace ξx of TxM
to every point x ∈ M in a smooth way so that there is no 2-dimensional submanifold whose
tangent space at every point x coincides with ξx. The pair (M, ξ) is a called a contact manifold.

Example 2.1.2. In R3, the standard contact structure is

ξstd = ker(dz + xdy) = span

{
∂

∂x
,
∂

∂y
− x

∂

∂z

}
.

Definition 2.1.3. A contactomorphism f : (M1, ξ1) → (M2, ξ2) between contact manifolds is
a diffeomorphism f : M1 → M2 so that ξ1 = f∗ξ2.

Definition 2.1.4. A Legendrian knot K in a contact manifold (M3, ξ) is knot in M that is
everywhere tangent to ξ.

Example 2.1.5. Consider the the contact manifold (R3, ξstd). A knotK in R3 can be parametrized
by a smooth embedding

ϕ : S1 → R3

t 7→ (x(t), y(t), z(t)),

where we think of S1 as parametrized by angle t ∈ [0, 2π]. In this setting, K is Legendrian if
and only if z′(t) + x(t)y′(t) = 0 for every t ∈ S1.

The most common way to picture a Legendrian knot is to take the front projection of this
parametrization, i.e. project into the yz-plane:

ϕΠ : S1 → R2

t 7→ (y(t), z(t)).
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The x coordinate at each t ∈ S1 can be recovered using the equation z′(t) + x(t)y′(t) = 0

above. Indeed, this implies x(t) = − z′(t)
y′(t) . Hence, the front projection of a Legendrian knot,

determines the knot itself.

There are two further important features to note about this projection:

(1) It has no vertical tangencies: indeed, a vertical tangency happens whenever y′(t) = 0
and z′(t) ̸= 0, which is impossible by the equation above. However, ϕ must still be an
embedding, so if y′(t) = z′(t) = 0, then x′(t) ̸= 0 necessarily. The front projections near
these points looks like cusps:

Figure 2.2: Avoiding vertical tangencies

(2) At a double point, the curve that has more slope (i.e. larger dz
dy ) crosses behind the curve

of less slope. Hence, only the crossings on the left of the following figure are allowed:

Figure 2.3: Allowed crossing (left) and forbidden crossing (right)

In Figure 2.4 below there are some examples of front projections of Legendrian knots in
(R3, ξstd).

Figure 2.4: Examples of Legendrian knots in (R3, ξstd): the unknot, the right handed trefoil
knot and the figure eight knot, respectively.

It is a standard fact that any smoothly embedded knot admits a projection into R2 so
that self-intersections are transverse and happen at double points. We can further isotope this
diagram by replacing each vertical tangency by a left or right cusp (as in Figure 2.2) and any
forbidden crossing by either of the following:
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Figure 2.5: Transforming forbidden crossings into allowed ones

Now, such a diagram is the front projection of a Legendrian knot in (R3, ξstd) by setting

x(t) = − z′(t)
y′(t) . Thus, we have:

Proposition 2.1.6. Any smoothly embedded knot in R3 is smoothly isotopic to a Legendrian
knot.

This example in R3 is quite representative because by Darboux’s theorem ([5]), any two
contact manifolds are locally contactomorhic. In particular, any Legendrian knot locally looks
like in the example above. Hence, the above proposition is generalized to:

Corollary 2.1.7. Any smoothly embedded knot in a contact manifold (M3, ξ) is smoothly iso-
topic to a Legendrian knot.

Remark 2.1.8. Everything we have described so far is also true for links.

Next, we want to define a standard contact structure ξc on M3
k = #kS

1×S2. By convention,
set M3

0 = S3. Note that M3
k is the boundary of B4 ∪ k 1-handles. Hence, it makes sense to

draw links in Mk as links in a plane with k dotted circles.

Theorem 2.1.9 ([12]). There exists a contact structure ξc on Mk so that any Legendrian link
can be pictured in a diagram of the form

m
Legendrian

link
tangle

Figure 2.6: Legendrian link diagram in standard form

where:

• each color represents a component of the link,

• the horizontal lines are supposed to be closed above the diagram (just as when taking the
closure of a braid). Since this is can be made implicit in the diagram with no ambiguity,
we omit these closing lines.
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• The ”Legendrian link tangle” box is a link tangle which is Legendrian in the sense of
Example 2.1.5. That means, vertical tangencies are not allowed (they are replaced by
cusps) and only crossings on the left of Figure 2.3 are allowed.

In the next section we will state a more general result (cf. Theorem 2.2.3) which implies the
theorem above.

For now, and to finish this section, we define the classical invariants of Legendrian knots.
Let K be an oriented Legendrian knot in (Mk, ξc).

Definition 2.1.10. The canonical framing of K is the framing associated to the normal vector
to ξc at every point of K. The Thurston-bennequin number tb(K) of K is the framing coefficient
of its canonical framing. Since this framing differs from the blackboard framing by a left-hand
twist for each cusp, it can be computed as

tb(K) = wr(K)−#right cusps.

Definition 2.1.11. The rotation number of K is

r(K) = #downward left cusps−#upward right cusps.

For an intrinsic definition of this invariant, see [8] §2.6 or [14] §11.1.

Example 2.1.12. The knots of Figure 2.4 have (tb, r) = (−1, 0), (tb, r) = (1, 0), (tb, r) = (−3, 0),
respectively.

Remark 2.1.13. Note that these numbers are not invariant up to smooth (or topological) isotopy.
However, they are invariant up to Legendrian isotopy.

2.2 Stein domains

In this section we define a family of 4-manifolds with some extra structure that induces a contact
structure on their boundary. These manifolds are called Stein domains. After this, we give a
simple characterization of them in terms of handlebody decompositions. Lastly, we state three
obstruction inequalities about these manifolds that will be used in the next sections.

Let W 4 be a complex surface with boundary. Then, its complex structure J induces a
2-plane field on its boundary M3 via

ξx = TxM ∩ J(TxM).

However, this ξ need not define a contact structure on M3. The next definition imposes some
extra structure making sure that the 2-plane field above does define a contact structure.

Definition 2.2.1. A complex surface W 4 with boundary is a Stein domain if it admits a proper
Morse function f : W 4 → [0, 1] with ∂W = f−1(1) and such that, away from the critical points,
the complex structure induces a contact structure on each level set f−1(t).

Example 2.2.2 ([12]). The 4-ball B4 ⊂ C2 with the Morse function ϕ(z) = ||z||2 is a Stein
domain. Let ξc be the contact structure induced on S3 = ∂B4. Then, (S3∖ ∗, ξc) and (R3, ξstd)
are contactomorphic. In particular, this proves Theorem 2.1.9 for k = 0.

Further examples of Stein domains will be constructed using the following results:

Theorem 2.2.3. ([7]) A 4-manifold consisting of one 0-handle and k 1-handles admits the
structure of a Stein domain whose induced contact structure on the boundary is (contactomorphic
to) ξc from Theorem 2.1.9.
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Theorem 2.2.4. ([7], [12]) Suppose W 4 admits a handle decomposition of the form

W = h0 ∪ h11 ∪ . . . ∪ h1k ∪ h21 ∪ . . . ∪ h2l .

Denote W1 = h0 ∪ h11 ∪ . . . ∪ h1k and consider the contact structure ξc on its boundary ∂W1
∼=

#kS
1 ×S2 given by Theorem 2.2.3. Suppose that every 2-handle h2i is attached to ∂W1 along a

Legendrian knot Ki with framing tb(Ki)− 1. Then, W admits the structure of a Stein domain
such that the Chern class c1(W ) is represented by a cocycle φ with ⟨φ, h2i ⟩ = r(Ki) after orienting
Ki. Moreover, Legendrian knots in ∂W can still be pictured by diagrams in standard form (i.e.
as in Figure 2.6).

To end this section, we state three obstruction inequalities for Stein domains. They all
follow from an adjunction inequality from Seiberg-Witten theory.

Theorem 2.2.5. ([20], Theorem 3.4) Let W 4 be a Stein domain with M3 = ∂W . Let K be a
Legendrian knot in M . Then:

tb(K) + |r(K)| ≤ 2g4(K)− 1,

where g4(K) is the minimal genus of a surface in W that bounds K.

Theorem 2.2.6. ([20], Proposition 2.1) Let W 4 be a Stein domain and S a smoothly embedded
orientable surface in W with g(S) > 0 and [S]2 ≥ 0. Then:

[S]2 + |⟨c1(W ), [S]⟩| ≤ 2g(S)− 2.

Along a similar line, we have a statement for smoothly embedded 2-spheres.

Theorem 2.2.7. ([20], Proposition 2.2) Let W 4 be a Stein domain and S a smoothly em-
bedded 2-sphere in W with [S] ̸= 0 in H2(W ). Then, [S]2 ≤ −2 and if equality holds, then
⟨c1(W ), [S]⟩ = 0.

This last result will be the most important obstruction in this work, as almost every con-
struction we make will rely on it.

2.3 Examples of corks

In this section we prove that the positron cork is indeed a cork. An analogous argument works
also for the Mazur cork.

Denote the positron cork of Figure 2.1 by W 4. First we define its boundary twist. Its Kirby
diagram can be isotoped to look like in Figure 2.7 below. This picture has the advantage of
being symmetric with respect to the vertical axis. Furthermore, the boundary of a 4-manifold
does not distinguish between carving out the tubular neighborhood of a disk (i.e. a dotted
circle) and attaching a 0-framed 2-handle along an unknot.1 Hence, we can swap the dotted
circle by the 0-framed unknot giving an involution τ of the boundary ∂W .

1In fact, both of them yield, on the boundary, 0-framed Dehn surgery along the unknot.
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τ

α
β

0 0

Figure 2.7: The positron cork W 4 and its boundary twist τ : ∂W → ∂W .

Claim 2.3.1. W 4 is compact and contractible.

Proof. Compactness is clear because W 4 is defined by a Kirby diagram with a finite number of
handles. In order to show that W 4 is contractible, note that the homotopy type of a manifold
after attaching a k-handle on the homotopy class of its attaching sphere. This is because
handlebodies are just CW complexes with thickened cells, and the homotopy type of a CW
complex depends only on the homotopy class of its attaching maps ([16], Proposition 0.18).
This means in particular that in an Kirby diagram we are free to reverse any crossing of the
attaching sphere of a 2-handle. Hence, we have a chain of homotopy equivalences:

≃

0 0
0 0

≃ ≃

Figure 2.8: The positron cork is contractible.

The last Kirby diagram in the figure above is a cancelling pair, so it is the 4-ball, and hence
contractible.

It remains to show that the involution τ : ∂W → ∂W does not extend to a diffeomorphism
W → W . Note that τ sends the knot α to the knot β (cf. Figure 2.7). Since the knot β goes
around the attaching sphere of the 2-handle, it is (smoothly) slice. A slice disk can be seen as
the obvious one by pushing its interior into the interior of W 4. Now, if τ did extend to the
interior, then α would also be slice, so it suffices to prove that this is not the case. In order to
do this, we will use the obstruction on the 4-genus of a knot given in Theorem 2.2.5.

Claim 2.3.2. W 4 is a Stein domain.

Proof. The leftmost Kirby diagram of Figure 2.1 can be pictured in standard form as in Fig-
ure 2.9 below.
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K

0

Figure 2.9: Kirby diagram of the positron cork in standard form.

The 2-handle is attached along a Legendrian knot K with tb(K) = 4 − 2 = 2. Hence, the
framing is not tb(K)−1, as Theorem 2.2.4 requires. However, the Thurston-Bennequin number
of a Legendrian knot can be made as small as we want without changing its smooth isotopy
class. This is done in Figure 2.10 by adding a right and a left cusp.

K

0

Figure 2.10: Kirby diagram of the positron cork as a Stein domain.

Now, the framing of the 2-handle equals 0 = tb(K) − 1, so we are in the situation of
Theorem 2.2.4. Hence, W 4 is a Stein domain.

Claim 2.3.3. The knot α is not slice.

Proof. From the picture below we have tb(α) = 0 and r(α) = 0 so Theorem 2.2.5 implies
0 ≤ 2g4(α)− 1 and hence g4(α) > 0, so α is not slice.

α

0 K

Figure 2.11: The positron cork and the knot α in standard form.

Remark 2.3.4. By Remark 2.0.2, τ does extend to a homeomorphism W → W , so α is topolog-
ically slice. In particular, this shows the existence of knots that are topologically slice, but not
smoothly slice, although they live in the non-trivial integral homology 3-sphere ∂W .



Chapter 3

Exotically knotted complex curves in
C2

The ultimate goal of this chapter is to present Hayden’s argument for proving:

Theorem A. There exist infinitely many pairs of proper holomorphic complex curves in C2

which are exotically knotted.

In Section 3.1, we exploit the cork’s exotic nature to produce exotically knotted disks in B4

(relative boundary). This step is actually not necessary towards proving the theorem above,
but the idea of distinguishing double branched covers to obstruct surfaces from being isotopic
will be used over and over again in the next sections.

In Section 3.2, we go several steps ahead and produce surfaces of any positive genus which
are exotically knotted in B4 and remain exotically knotted when restricted to the interiors.

In Section 3.3, we realize the surfaces above as positively braided surfaces and consequently
as compact pieces of complex algebraic curves.

Finally, in Section 3.4 we find a Fatou-Bieberbach domain that allows us to holomorphically
embed the interior of these compact pieces into C2 while retaining the exotic behaviour proven
in Section 3.2.

3.1 Exotically knotted disks in B4

In this section, we produce a pair of properly embedded disks in B4 which are exotically knotted
relative boundary. These disks will constitute the fundamental building blocks for every con-
struction in this work. In the next chapter, we will be able to extend this result to arbitrarily
large n-tuples of exotically knotted disks relative boundary (cf. Theorem D).

Consider the ribbon disks D and D′ of Figure 3.1 below that bound the knot K = 17nh74.

Figure 3.1: The disks D (left) and D′ (right).

25
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Notice that they are clearly smoothly isotopic, as D′ is obtained from D by rotating it 180º
along the vertical axis. However, since they have the same boundary K = ∂D = ∂D′, it still
makes sense to ask whether they are topologically or smoothly isotopic relative boundary.

We first deal with the topological isotopy. This will be a consequence of a result proven by
Conway and Powell (namely Theorem 3.1.3 below). In order to match their conventions, we
first give some general definitions.

Definition 3.1.1. Let D ⊂ B4 be a (topologically) slice disk for a knot K in S3. We say
that D is homotopy ribbon if the inclusion map S3 ∖ νK ↪→ B4 ∖ νD induces a surjection
π1(S

3 ∖ νK) ↠ π1(B
4 ∖ νD). The knot K is called homotopy ribbon if it bounds a homotopy

ribbon disk.

Definition 3.1.2. Let G be a group. A homotopy ribbon disk D is called G-homotopy ribbon
if π1(B

4 ∖ νD) ∼= G. An oriented knot is called G-homotopy ribbon if it bounds a G-homotopy
ribbon disk.

This already allows us to state the result we are interested in:

Theorem 3.1.3 ([3]). Any two Z-homotopy ribbon disks for the same Z-homotopy ribbon knot
are ambiently topologically isotopic relative boundary.

We will rather use this in the following form:

Corollary 3.1.4. Let D and D′ be two smooth, properly embedded disks in B4 with K = ∂D =
∂D′. If π1(B

4 ∖ D) ∼= π1(B
4 ∖ D′) ∼= Z, then the disks are ambiently topologically isotopic

relative boundary.

Proof. By the preceding theorem, it suffices to show thatD is a homotopy ribbon disk (the argu-
ment for D′ is, of course, exactly the same). Hence, we want to show that the inclusion induced
homomorphism π1(S

3 ∖ νK) ↠ π1(B
4 ∖ νD) is surjective. For this, since π1(B

4 ∖ νD) ∼= Z,
it will be enough to prove that the corresponding homomorphism on abelianizations H1(S

3 ∖
νK) ↠ H1(B

4 ∖ νD) is surjective (integer coefficients are assumed unless otherwise stated).
The Mayer-Vietoris sequences associated to the decompositions S3 = (S3 ∖K) ∪ νK, B4 =
(B4 ∖D) ∪ νD fit into a commutative diagram with exact rows:

H2(S
3) H1(νK ∖K) H1(S

3 ∖K)⊕H1(νK) H1(S
3) H̃0(νK ∖K)

H2(B
4) H1(νD ∖D) H1(B

4 ∖D)⊕H1(νD) H1(B
4) H̃0(νD ∖D)

Plugging in the known values of the groups, we get:

0 H1(K × S1) H1(S
3 ∖K)⊕H1(K) 0 0

0 H1(D × S1) H1(B
4 ∖D)⊕ 0 0 0

Notice that the second vertical map starting from the left is surjective, asH1(D×S1) is generated
by {∗} × S1. By the 5-Lemma, the middle arrow is also surjective. But notice that it sends
H1(K) to H1(D) = 0. Hence, the map H1(S

3 ∖K) → H1(B
4 ∖D) is surjective.

This last result easily allows us to confirm:

Corollary 3.1.5. The disks D and D′ of Figure 3.1 are topologically isotopic relative boundary.
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Proof. By Corollary 3.1.4 above, it suffices to show π1(B
4 ∖ D) ∼= π1(B

4 ∖ D′) ∼= Z. In fact,
it is enough to prove this for D, as D and D′ are clearly isotopic (via the obvious isotopy that
does not preserve the boundary). Following [14], §6.2, we produce a Kirby diagram of B4 ∖ νD
(middle of Figure 3.2). We could already compute the fundamental group using this diagram
and Proposition 1.2.5, but for later purposes it will be convenient to perform a 1-handle slide
first. This way, we obtain the rightmost diagram of Figure 3.2.

∼

x

y

0 0

Figure 3.2: The complement B4 ∖ νD.

Now, using Proposition 1.2.5, we obtain

π1(B
4 ∖ νD) ∼= ⟨x, y|xy−1yx−1y⟩ ∼= ⟨x, y|y = 1⟩ ∼= Z,

as wanted.

In order to prove that the disks D and D′ are not smoohtly isotopic relative boundary,
we will realize the double branched cover Σ2(B

4, D) as the positron cork and then exploit its
boundary twist to obstruct the smooth isotopy. The first part is stated in the following lemma
and proven in the appendix.

Lemma A.1. A Kirby diagram of the double branched cover Σ2(B
4, D) is shown on the right

of Figure 3.3. Furthermore, the loops γ and γ′ on the left, have lifts γ̃ and γ̃′, respectively.

0

γ γ′ γ̃

γ̃′

Figure 3.3: The knot K together with two loops γ and γ′ (left). The double branched cover
Σ2(B

4, D) together with lifts of γ and γ′ (right).

We are now ready to prove:

Theorem B. The disks D and D′ of Figure 3.1 are exotically knotted relative boundary.
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Proof. We only need to check that they are not smoothly isotopic relative boundary. Suppose
they are, i.e. we have a diffeomorphism φ : (B4, D) → (B4, D′) that preserves the boundary
pointwise. Consider also the obvious involution η : B4 → B4 which maps D to D′. Notice that
η sends γ to γ′ (See Figure 3.3 above).

Thus, the composition η ◦ φ defines a diffeomorphism (B4, D) → (B4, D) which sends γ to
γ′. By lifting to double branched covers, we get a commutative diagram:

γ̃ γ̃′

Σ2(B
4, D) Σ2(B

4, D)

(B4, D) (B4, D′) (B4, D)

γ γ′

∼=

φ η

In particular, we have obtained a self-diffeomorphism of Σ2(B
4, D) which sends γ̃ to γ̃′,

which contradicts Claim 2.3.3 (essentially the fact that the cork’s boundary twist does not
extend to the interior).

3.2 Exotically knotted surfaces in B̊4

In this section we go several steps ahead and construct pairs of exotically knotted surfaces in
B4 of arbitrary genus and number of holes (except for the disk). Crucially for the next sec-
tions, these pairs of surfaces will remain exotically knotted when restricted to the interior of
the 4-ball. The argument we present resembles the one of the previous section in the sense that
in order to distinguish the smooth isotopy classes of two surfaces, we distinguish the double
branched covers along them. This time, however, the obstruction we use will be Theorem 2.2.7.
In particular, this justifies that this argument does not work for the disks, asH2(Σ2(B

4, D)) = 0.

We start with the annuli and once punctured tori of Figures 3.4 and 3.5.

Figure 3.4: The annuli A (left) and A′ (right).

Figure 3.5: The tori T (left) and T ′ (right).
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Notice that both pairs of surfaces are topologically isotopic relative boundary. Indeed, they
are obtained by attaching the same bands in the same manner to the boundary K = ∂D = ∂D′,
so we can simply extend the topological isotopy relative boundary between D and D′.

The proof that they are not smoothly isotopic will consist of the following two steps.

Proposition 3.2.1. The double branched covers Σ2(B
4, A′) and Σ2(B

4, T ′) contain smoothly
embedded 2-spheres of self-intersection number −2.

Proposition 3.2.2. The double branched covers Σ2(B
4, A) and Σ2(B

4, T ) do not contain
smoothly embedded 2-spheres of self-intersection number −2.

Notice that this will prove something stronger. Namely, that the pairs (B4, A) and (B4, A′)
are not diffeomorphic (and likewise for the tori). Let’s begin by explicitly constructing these
2-spheres.

Proof. (of 3.2.1) By Lemma A.3 in the Appendix, these spheres can be realized by the Seifert
disks of the purple 2-handle with interior pushed into the interior of the 4-manifold and capping
them off with the core of the 2-handle (cf. Proposition 1.2.10).

In order to prove Proposition 3.2.2, we first compute Kirby diagrams for Σ2(B
4, A) and

Σ2(B
4, T ).

Lemma A.2. The following are Kirby diagrams for the double branched covers Σ2(B
4, A) and

Σ2(B
4, T ), respectively.

−2

−4

−2

Figure 3.6: Kirby diagrams of Σ2(B
4, A) (left) and Σ2(B

4, T ) (right).

We are now ready to prove Proposition 3.2.2. We will use the genus obstruction from
Theorem 2.2.7.

Proof. (of 3.2.2) The Kirby diagrams of Figure 3.6 can be redrawn in standard form:
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−4

−2−2

Figure 3.7: Kirby diagrams for Σ2(B
4, A) (left) and Σ2(B

4, T ) (right) in standard form.

Let us call K1 the blue knot and K2 the orange one with the orientations given above.
Let WA = Σ2(B

4, A) and WT = Σ2(B
4, T ). We have tb(K1) = −1, r(K1) = −2, tb(K2) =

−3, r(K2) = 0. By Theorem 2.2.4, both WA and WT admit Stein structures so that their Chern
classes satisfy

⟨c1(WA), h1⟩ = ⟨c1(WT ), h1⟩ = r(K1) = −2,

where h1 is the homology class represented by the blue 2-handle in each case. Now, suppose S is
a smoothly embedded 2-sphere in WA with [S]2 = −2. In particular, [S] = λh for some non-zero
λ ∈ Z. Hence, ⟨c1(WA), [S]⟩ = λ⟨c1(WA), h1⟩ = −2λ ̸= 0, contradicting Theorem 2.2.7.

The argument for WT is essentially the same. Suppose S is a smoothly embedded 2-sphere in
WT with [S]2 = −2. The intersection form of WT with respect to the basis {h1, h2} of H2(WT )
has matrix (cf. Proposition 1.2.10) [

−2 1
1 −4

]
Writing [S] = λh1 + µh2 and setting [S]2 = −2, we obtain

−2 =
[
λ µ

] [−2 1
1 −4

] [
λ
µ

]
= −2(λ2 − λµ+ 2µ2)

Hence, we must have λ2−λµ+2µ2 = 1, which has a unique integer solution up to sign: λ = ±1,
µ = 0. This implies ⟨c1(WT ), [S]⟩ = ∓2 ̸= 0, contradicting Theorem 2.2.7 again.

The next step is to extend this construction to pairs of exotically knotted orientable surfaces
with boundary of arbitrary genus and number of holes. Notice that the classical classification
theorem for closed smooth (or topological) surfaces immediately implies:

Theorem 3.2.3. (Classification of compact surfaces with boundary) Let S be a compact, con-
nected, topological (resp. smooth) surface with boundary. Suppose its boundary has k compo-
nents. Then, S is homeomorphic (resp. diffeomorphic) to X-with-k-holes, where X is exactly
one of the following:

(1) S2,

(2) #mT 2, or

(3) #mP 2.

(1) and (2) are orientable and (3) is not.
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We will be interested in writing these surfaces as boundary connected sums of simple pieces.
For this, let A1 be S2-with-2-holes (i.e. an annulus), T1 be T 2-with-1-hole, and M1 be P 2-with-
1-hole (i.e. a Möbius band). We can reformulate the above theorem as:

Corollary 3.2.4. Any compact, connected, topological (resp. smooth) surface with boundary is
homeomorphic (resp. diffeomorphic) to exactly one of the following:

(1) the disk D2,

(2) ♮kA1 with k ≥ 1,

(3) ♮kA1 ♮mT1 with k ≥ 0,m ≥ 1, or

(4) ♮kA1 ♮mM1 with k ≥ 0,m ≥ 1.

(1), (2) and (3) are orientable and (4) is not.

Fortunately for us, double branched covers behave very nicely under boundary connected
sums. Namely:

Proposition 3.2.5. Let S1 and S2 be two smooth, properly embedded, compact, connected
surfaces in B4. Then, we have a diffeomorphism

Σ2(B
4, S1 ♮ S2) ∼= Σ2(B

4, S1) ♮ Σ2(B
4, S2).

Proof. Realize the branching action in the 4-dimensional 1-handleD1×D3 alongD1×D1 ⊂ D1×
D3 by squaring around the axis D1 of D3. Glue the 4-manifolds Σ2(B

4, S1) and Σ2(B
4, S2) with

such a 1-handle to obtain Σ2(B
4, S1) ♮ Σ2(B

4, S2). By our choice of gluing, this clearly covers B4

branched along S1 ♮ S2. Finally, by uniqueness of double branched covers (cf. Proposition 1.3.6)
we get the diffeomorphism.

Remark 3.2.6. The embedded boundary connected sum of two embedded surfaces is of course
not well-defined (for example, when one of the surfaces has boundary with several connected
components). However, this will not matter for our argument, as the only crucial thing is that
we boundary sum pairs of topologically isotopic surfaces (relative boundary) using the same
embedded bands, so that the resulting embedded surfaces are still topologically isotopic relative
boundary.

By Corollary 3.2.4, in order to obtain orientable surfaces with more holes and more genus,
we will need to boundary sum annuli and tori-with-1-hole. More explicitly, consider the annulus
A0 and torus-with-1-hole T0 of the Figure below:

Figure 3.8: The annulus A0 (left) and the torus-with-1-hole T0 (right)

By the final part of Section 1.3, the double branched covers of B4 along these surfaces have
Kirby diagrams:
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−4 −4

−4

Figure 3.9: Kirby diagrams of Σ2(B
4, A0) (left) and of Σ2(B

4, T0) in standard form.

In particular, notice that they admit structures of Stein domains (cf. Theorem 2.2.4).
We are now ready to prove:

Theorem C. Any compact, connected, orientable surface with boundary (other than the disk)
admits a pair of smooth, proper embeddings in B4 that are exotically knotted. Furthermore, they
remain exotically knotted when restricted to the interior.

Proof. By Corollary 3.2.4, such surface will be diffeomorphic to ♮kA1 with k ≥ 1, or to ♮kA1 ♮mT1

with k ≥ 0,m ≥ 1. Let us start with the first case.

Pick F = A ♮k−1A0 and F ′ = A′ ♮k−1A0. Notice that by boundary summing in the same
manner in each case, these surfaces will be topologically isotopic relative boundary, because
their summands were. Denote the double branched covers Σ2(B

4, F ) and Σ2(B
4, F ′) by W and

W ′, respectively. By Proposition 3.2.5, we have diffeomorphisms

W ∼= Σ2(B
4, A) ♮k−1Σ2(B

4, A0),

W ′ ∼= Σ2(B
4, A′) ♮k−1Σ2(B

4, A0).

Since Σ2(B
4, A′) contains a smoothly embedded 2-sphere of square −2, so will W ′. It suffices to

show that W does not contain such sphere. Notice that a Kirby diagram of W can be obtained
by drawing Kirby diagrams of its boundary connected summands side by side. Since all of these
Kirby diagrams have the right relation between framing coefficients and Thurston-Bennequin
numbers, Theorem 2.2.4 implies that W admits a Stein structure with ⟨c1(W ), h1⟩ = −2, where
h1 is the homology class associated to the 2-handle of Σ2(B

4, A) of Figure 3.7. Now, with
respect to the basis {h1, . . . , hk} of H2(W ) associated to the 2-handles the intersection form of
W has the block-sum matrix (cf. Proposition 1.2.10)

[−2]⊕k−1 [−4].

Suppose S is a smoothly embedded 2-sphere in W with [S]2 = −2. Then, [S] = ±h1 and hence
⟨c1(W ), [S]⟩ = ∓2 ̸= 0, contradicting Theorem 2.2.7.

For the second case, pick F = T ♮kA0 ♮m−1T0 and F ′ = T ′ ♮kA0 ♮m−1T0. Again, denote the
double branched covers along these surfaces by W and W ′, respectively. We have diffeomor-
phisms

W ∼= Σ2(B
4, T ) ♮kΣ2(B

4, A0) ♮m−1Σ2(B
4, T0),

W ′ ∼= Σ2(B
4, T ′) ♮kΣ2(B

4, A0) ♮m−1Σ2(B
4, T0).

Since Σ2(B
4, T ′) contains a smoothly embedded 2-sphere of square −2, so will W ′. As before,

it suffices to show that W does not contain such sphere. Again, W will admit a Stein structure
with ⟨c1(W ), h1⟩ = −2. With respect to the basis {h1, h2, bi, cj , dj} of H2(W ) represented by
the 2-handles, the intersection form of W has the block-sum matrix[

−2 1
1 −4

]
⊕k [−4]⊕m−1

[
−4 1
1 −4

]
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Now, suppose S is a smoothly embedded 2-sphere in W with [S]2 = −2. Notice that the

matrices A =

[
−2 1
1 −4

]
B = [−4] and C =

[
−4 1
1 −4

]
satisfy vTAv ≤ −2, vTBv, vTCv < −2

for every vector v ̸= 0 with integer coefficients. This is because A+2id is negative semi-definite
and both B + 2id and C + 2id are negative definite. Hence, the equation [S]2 = −2 implies
[S] = ±h1, so ⟨c1(W ), [S]⟩ = ∓2 ̸= 0, contradicting Theorem 2.2.7.

Notice that in each case we have distinguished the interiors of the double branched covers.
Hence, the surfaces remain exotically knotted when restricted to the interior.

3.3 Braided surfaces and algebraic curves

The goal of this section is to realize the previous surfaces as compact pieces of algebraic curves.
Namely, we prove:

Theorem 3.3.1. Fix the topological type F of any compact, connected, orientable surface with
boundary other than the disk. Let D denote the unit bidisk D2 × D2. There exist complex
algebraic curves V0, V1 ⊂ C2 so that

(i) the intersections F0 = V0 ∩ D, F1 = V1 ∩ D have topological type F and are properly
embedded in D,

(ii) F0 and F1 are isotopic through homeomorphisms of D that are smooth in a neighborhood
of ∂D,

(iii) the intermediate surfaces Ft of the isotopy have boundary in ∂D2 × D̊2,

(iv) Σ2(D, F0) contains a smoothly embedded 2-sphere of square −2, and

(v) Σ2(D, F1) does not contain a smoothly embedded 2-sphere of square −2.

Before we get into the details, we introduce braided surfaces.

Definition 3.3.2. The n-stranded braid group Bn is

⟨σ1, . . . , σn−1|σiσi+1σi = σi+1σiσi+1, σiσj = σjσi, for |i− j| ≥ 2⟩.

The generators σ1, . . . , σn−1 are called Artin generators.

Recall that any element in Bn can be geometrically realized by an n-braid. For example,
the Artin generators are realized as the n-braids (for n = 3)

σ1 σ2

Figure 3.10: The Artin generators of B3.

We can also realize their inverses by changing the crossings:
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σ−1
1 σ−1

2

Figure 3.11: The inverses of Artin generators of B3.

Then, any element in Bn can be realized by concatenating Artin generators and their in-
verses. For example, the word σ1σ2σ1σ

−1
2 ∈ B3 is represented by the 3-braid

Figure 3.12: 3-braid representing σ1σ2σ1σ
−1
2 ∈ B3.

Definition 3.3.3. A band in Bn is a conjugate of an Artin generator σi or an inverse of an
Artin generator σ−1

i . In the first case, the band is called positive and in the second case, it is
called negative.

Definition 3.3.4. A band representation of a word β ∈ Bn is an ordered set b = (b1, . . . , bk) of

bands such that β =
k∏

i=1
bi.

As explained in [24], a band representation b of β ∈ Bn induces a ribbon surface in S3

bounding the closure of β. This surface is called the braided surface associated to b and can
be thought of as embedded in D2 ×D2 with boundary in ∂D2 ×D2. The figures below depict
examples of such surfaces.

Figure 3.13: Braided surface associated to the band representation (σ1, σ2, σ1, σ
−1
2 ).

Figure 3.14: Braided surface associated to the band representation (σ1σ2σ
−1
1 )

Definition 3.3.5. A band representation b = (b1, . . . , bk) is called quasipositive if each band bi
is positive.
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It turns out that a braided surface arising from a quasipositive band representation always
satisfies the following definition.

Definition 3.3.6. A smooth, properly embedded surface F in D = {(z, w) ∈ C2 : |z| ≤ 1, |w| ≤
1} is positively braided if

(a) ∂F is a braid in ∂D2 × D̊2,

(b) the projection πz|F : F → D2 is a branched covering, and

(c) F is oriented so that πz|F is orientation-preserving at all regular points and πw|F is orientation-
preserving at all branch points (with D2 ⊂ C having the complex orientation).

The following theorem is the ultimate reason why these definitions matter to us.

Theorem 3.3.7 ([23]). A positively braided surface is smoothly isotopic through positively
braided surfaces to the intersection of a smooth complex algebraic curve V ⊂ C2 with D.

Hence, our goal now is to realize the surfaces of last section as positively braided surfaces.
We will sketch the argument (the full computations and proofs are exhaustively done in [17]).

As a first step, we realize the knot K = ∂D = ∂D′ as the closure of a quasipositive braid.

Lemma 3.3.8 ([17], 4.5). The knot K is smoothly isotopic to the closure of the braid

β = (σ2σ3σ
−1
2 )(σ−2

1 σ2σ3σ
2
4σ

−1
3 σ2σ3σ

−2
4 σ−1

3 σ−1
2 σ2

1)(σ
−1
3 σ2σ1σ

−1
2 σ3)(σ

−1
4 σ3σ4)

Furthermore, the bands b, b′ and c below get isotoped as shown.

b b′

c bb′c

Figure 3.15: The knot K, the braid β and the bands b, b′, c.

Notice that the disks D and D′ are determined by the band moves b and b′, respectively. In
order to identify these disks as the positively braided surfaces of some band representation, we
will need the following lemma.

Lemma 3.3.9 ([17], 4.3). Any two positively braided surfaces bounded by the unlink are smoothly
isotopic relative boundary.

Lemma 3.3.10 ([17], 4.4). The disks D and D′ of Figure 3.1 are smoothly isotopic to the
positively braided surfaces arising from the band representations of β:

d = (σ2σ3σ
−1
2 , σ−2

1 σ2σ3σ
2
4σ

−1
3 σ2σ3σ

−2
4 σ−1

3 σ−1
2 σ2

1, σ
−1
3 σ2σ1σ

−1
2 σ3, σ

−1
4 σ3σ4),

d′ = (σ2, wσ
−1
2 σ1σ2w

−1, wσ−1
2 σ3σ1σ2σ

−1
1 σ−1

3 σ2w
−1, wσ2

3σ4σ
−2
3 w−1),

where w = σ3σ
−1
4 σ−1

1 σ−2
3 σ−1

2 σ−1
1 σ−1

3 .
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Proof. (sketch) We start with the disk D. By Lemma 3.3.8, it suffices to show that the disk
determined by the band move b on the right of Figure 3.15 is smoothly isotopic relative boundary
to the disk arising from the band representation d. The former disk is obtained by performing
the band move b, which yields an unlink U2, taking the standard Seifert surface for this unlink
and reattaching the band b. On the other hand, the latter disk arises as the braided surface
associated to d. Notice that by by removing band b, we get a positively braided surface which
also bounds the same unlink U2. Since standard Seifert surfaces for unlinks are positively
braided (after pushing the interiors into the interior of the bidisk D), we can use Lemma 3.3.9
to conclude that these two surfaces bounding the unlink are smoothly isotopic relative boundary.
Finally, reattaching the band b yields smoothly isotopic disks, as wanted.

On the other hand, the disk D′ is determined by the band move b′, which unfortunately
does not get isotoped to an Artin generator we are conjugating in the band representation d.
In order to fix this, we rewrite ([17], A.1)

(σ3σ
−1
2 )(σ−2

1 σ2σ3σ
2
4σ

−1
3 σ2σ3σ

−2
4 σ−1

3 σ−1
2 σ2

1)(σ
−1
3 σ2σ1σ

−1
2 σ3)(σ

−1
4 σ3σ4)

as the quasipositive word

(wσ−1
2 σ1σ2w

−1)(wσ−1
2 σ3σ1σ2σ

−1
1 σ−1

3 σ2w
−1)(wσ2

3σ4σ
−2
3 w−1).

Hence, we obtain a quasipositive band representation d′ so that the band b′ is realized as the
first band in d′. Now, the same argument as above allows us to conclude that D′ is smoothly
isotopic to the positively braided surface arising from d′.

Remark 3.3.11. Of course, since the two disks D and D′ are smoothly isotopic (under the
obvious 180º rotation), the first part of the proof suffices. However, for the argument that
follows, we actually need to realize D′ as such braided surface, as we will want to attach bands
in a controlled manner to obtain the larger surfaces A′, T ′. In particular, since in the proof
above we have only changed the band representation on the right of the band b′, the band c
yielding A′ will still be attached at the leftmost part of the braided surface as in Figure 3.15.

As a further step towards the proof of Theorem 3.3.1, we now realize the elemental surfaces
of the previous section as positively braided surfaces.

Lemma 3.3.12. The surfaces A,A′, T, T ′, A0 and T0 are positively braided surfaces.

Proof. By Lemma 3.3.8, A and A′ smoothly isotopic to the positively braided surfaces arising
from the band representations d and d′, respectively, after attaching a positive band σ2 = c as
in Figure 3.15. Hence, they are positively braided surfaces.

The tori T and T ′ are obtained by attaching a positive twisted band as in Figure 3.16(a).
We isotope this band so that it is braided, at the expense of creating an extra strand as in
Figure 3.16(b) below. Notice that all bands are positive, so T and T ′ are positively braided
surfaces.

(a) (b)

Figure 3.16: The left portion of the positively braided surfaces realizing the tori T, T ′.
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For the annulus A0, simply notice that we can realize it as in Figure 3.17(a) and then perform
the same trick.

(a) (b)

Figure 3.17: The annulus A0 as a positively braided surface.

Similarly, the torus T0 is realized in Figure 3.18(a), which again can be transformed into a
positively braided surface.

(a) (b)

Figure 3.18: The torus T0 as a positively braided surface.

We are now ready to prove the main theorem of this section.

Proof. (of Theorem 3.3.1) Notice that we can boundary connect sum two positively braided
surfaces to obtain a positively braided surface: just stack them vertically and attach a posi-
tively half-twisted band between them. Hence, since all elemental surfaces A,A′, T, T ′, A0 and
T0 are positively braided, the surfaces F and F ′ from Theorem C of the desired topological type
F are also positively braided surfaces. By Theorem 3.3.7, these are smoothly isotopic to com-
pact pieces of algebraic curves F0 = V0∩D and F1 = V1∩D, respectively. This already shows (i).

For (ii) and (iii), notice that we can get from F0 to F1 through isotopies which either

• are smooth and keep the boundary in ∂D2 × D̊2, or

• come from homeomorphisms that fix the boundary pointwise.

In the first case, the isotopy is already everywhere smooth. In the second case, we can assume
that it is smooth near ∂D by taking a collar neighborhood of ∂D in D. Also, in either case, the
boundary stays in ∂D2 × D̊2.

Finally, (iv) and (v) immediately follow from the proof of Theorem C.

3.4 Finding a Fatou-Bieberbach domain

In this section, we holomorphically re-embed these complex algebraic curves we just found into
C2. We start by giving the overall idea and then get into the details.

Definition 3.4.1. A Fatou-Bieberbach domain is a proper open subset Ω ⊊ Cn that is biholo-
morphically equivalent to Cn.
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By the Riemann mapping theorem, Fatou-Bieberbach domains do not exist for n = 1. But
they do for any n > 1. In fact, this is one of the sort of notions that make complex analysis in
several variables fundamentally different than in one variable. This observation also suggests
that Fatou-Bieberbach domains are generally very wild and hard to construct.

On the other hand, these domains can be used to construct proper holomorphic embeddings
into C2. For example:

Theorem 3.4.2 ([25]). There exists a proper holomorphic embedding D̊2 ↪→ C2.

Proof. (idea) Find a Fatou-Bieberbach domain Ω ⊂ C2 that does not contain a neighborhood
of 0 and let L be a complex line that cuts Ω. Argue that L ∩ Ω contains a simply-connected
component P that is not all of L. By the Riemann mapping theorem, this component is
biholomorphically equivalent to D̊2 ⊂ C. Hence, we may compose these embeddings to obtain
a proper holomorphic one

D̊2 ∼= P ↪→ L ∩ Ω ↪→ Ω ∼= C2.

We will use a similar idea, although we will need to have careful control on our choice of
Fatou-Bieberbach domains, so that both the topological isotopy and the smooth obstruction
are preserved. The following result will provide such control.

Theorem 3.4.3 ([11]). For any R > 1, there exists a Fatou-Bieberbach domain Ω ⊂ C2 such
that:

(i) Ω ⊆ {(z, w) ∈ C2 : |z| < max(R, |w|)},

(ii) Ω ∩ (D̊2
R × D̊2

R) is an arbitrarily small C1-perturbation of D̊2
1 × D̊2

R, and

(iii) ∂Ω := Ω̄ ∖ Ω is C1-differentiable and intersects D̊2
R × D̊2

R in a C1-small perturbation of

∂D2
1 × D̊2

R.

Recall that our goal is to show:

Theorem A ([17]). There are infinitely many pairs of proper holomorphic curves in C2 that
are exotically knotted.

We organize the proof in a series of smaller assertions that will be taken care of individually.
Following Hayden’s notation, given two topological subspaces X,Y of the same topological
space, we write (X,Y ) to denote the pair (X,X ∩ Y ).

As a first step, we restate the main result of last section in a more adequate way for the
argument that follows.

Assertion 1. Let F0 and F1 be the properly embedded surfaces in D from last section. They
satisfy:

(a) F0 and F1 are properly and holomorphically embedded in D.

(b) F0 and F1 are isotopic through homeomorphisms of D that are smooth in a neighborhood of
∂D.

(c) The intermediate surfaces Ft have boundary in ∂D2
1 × D̊2

1.

(d) Σ2(D, F0) contains a smoothly embedded 2-sphere of square −2.

(e) Σ2(D, F1) does not contain a smoothly embedded 2-sphere of square −2.
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For δ > −1, define Dδ := D2
1+δ × D2

1+δ. For convenience, we rescale every pair (D, Ft) to
(D+ε, Ft) so that properties (a) − (e) above still hold when replacing D by D+ε. Hence, from
now on we write (D+ε, Ft) for these new rescaled pairs and, as described above, (D, Ft) will now
denote the pair (D,D ∩ Ft).

Assertion 2. We may choose ε > 0 so that the three pairs (D+ε, Fi), (D, Fi), (D−ε, Fi) are
diffeomorphic for i = 0, 1.

Proof. This follows simply by taking adequate collar neighborhoods and use them to define the
diffeomorphisms.

The following assertion claims existence of the Fatou-Bieberbach domain we are interested
in.

Assertion 3. There is a Fatou-Bieberbach domain Ω ⊂ C2 such that

(1) D−ε ⊂ Ω ⊂ W := {(z, w) ∈ C2 : |z| < max(1 + ε, |w|),

(2) each Ft ∩ Ω has the same topological type as Ft ∩ D̊2,

(3) each Ft ∩ Ω̄ is properly embedded in M := Ω̄ ∩ D+ε, and

(4) the isotopy they define is topologically locally flat.

Proof. Fix R ∈ (1, 1 + ε) and use Theorem 3.4.3 to get a Fatou-Bieberbach domain Ω ⊂ C2

satisfying properties (i)−(iii). Condition (1) of the assertion is then an immediate consequence
of (ii) (for the first inclusion) and of (i) (for the second inclusion).

By (ii), we can choose a Ω as a small enough C1-perturbation of D̊2
1 × D̊2

R so that (2) is
satisfied.

By (ii) and (iii), M = Ω̄ ∩ D+ε is a C1-manifold. By (iii), T := ∂Ω ∩ (D̊2
R × D̊2

R) is an

arbitrarily small C1-perturbation of ∂D2
1 × D̊2

R. If we choose this perturbation small enough,

we may assume T ⊂ D̊+ε ∖ D−ε. Now, by Assertion 1(b), the intermediate surfaces Ft are
smooth near |z| = 1 and by (c), they are transverse to ∂D2

1×D2
R. By possibly choosing an even

smaller C1-perturbation, we can arrange for Ft to be transverse to T . Hence, Ft ∩ Ω̄ will be
properly embedded in M . Since t ranges over the compact interval [0, 1], we can choose a fixed
Fatou-Bieberbach domain Ω satisfying properties (1)− (3) for every t ∈ [0, 1].

Finally, since F0 is smoothly embedded in D+ε and the other surfaces Ft are obtained as
images of F0 under homeomorphisms of D+ε, they are locally flat in D+ε and hence also in
M .

Assertion 4. The isotopy of proper embeddings Ft ∩ Ω ↪→ Ω is covered by an ambient isotopy
of homeomorphisms of Ω.

In order to prove this we will need an isotopy extension theorem and a lemma:

Theorem ([6], Corollary 1.4). Let ht : N → M, t ∈ [0, 1], be a locally flat proper isotopy of a
compact (topological) manifold N into a (topological) manifold M . Then, ht is covered by an
ambient isotopy of homeomorphisms of M .

Lemma ([6], Corollary 1.3). Let Ht : M → M, t ∈ [0, 1], be an isotopy of a compact manifold
M and let {Bi|1 ≤ i ≤ p} be an open cover of M . Then, Ht can be written as a composition of
isotopies Ht = Hk,tHk−1,t · · ·H1,tH0, where each isotopy Hj,t : M → M is an ambient isotopy
which is supported by some member of {Bi}, i.e. Hj,t is the identity on the complement of some
Bi.
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Proof. (of Assertion 4) Each embedding Ft ∩ Ω ↪→ Ω is proper because of Assertion 3(3).
On the other hand, by the theorem above, Ft ∩ Ω̄ ↪→ M is covered by an ambient isotopy
of homeomorphisms of M . Since Ft ⊂ C × D̊2

R, the lemma above allows us to assume that
this ambient isotopy fixes every point with |w| ≥ R. Hence, we can extend the isotopy of
homeomorphisms of M by the identity to all of Ω̄. Notice that this isotopy will map the interior
of Ω to itself, as it maps the interior of M to itself (because M is a topological manifold) and
is the identity elsewhere. Hence, by restricting to the interior, we obtain an ambient isotopy of
homeomorphisms of Ω that covers Ft ∩ Ω ↪→ Ω.

By postcomposing with the biholomorphism Ω ∼= C2 we can re-embed the surfaces Ft ∩ Ω
in C2. We have:

Assertion 5. F0 ∩ Ω and F1 ∩ Ω are properly and holomorphically embedded in C2 and are
isotopic through homeomorphisms of C2.

Proof. The embeddings are proper by Assertion 3(3). They are holomorphic by Assertion 1(a).
They are isotopic through homeomorphisms of C2 by Assertion 4 after pre- and postcomposing
by the biholomorphism Ω ∼= C2.

It only remains to show that F0 ∩Ω, F1 ∩Ω ↪→ C2 are not isotopic through diffeomorphisms
of C2. This will immediately follow from Assertions 7, 8 below. However, we first prove that it
makes sense to talk about the double branched cover of Ω along Fi ∩ Ω. To ease notation, we
will denote Fi ∩ Ω simply by Fi.

Assertion 6. There is a unique (up to diffeomorphism) double branched cover of Ω along Fi.

Proof. This is essentially the same argument as in the proof of Proposition 1.3.6. By Propo-
sition 1.3.4, it suffices to check that H1(Ω ∖ Fi) ∼= Z. Consider the Mayer-Vietoris sequence
associated to the decomposition Ω = (Ω∖ Fi) ∪ νFi:

H2(Ω) H1(νFi ∖ Fi) H1(Ω∖ Fi)⊕H1(νFi) H1(Ω)

0 H1(S
1)⊕H1(Fi) H1(Ω∖ Fi)⊕H1(Fi) 0

= ∼ = ∼ = =

Under our identifications, the H1(Fi) summand on the left gets mapped to the H1(F ) summand
on the right, so H1(Ω∖ Fi) ∼= H1(S

1) ∼= Z.

Assertion 7. Σ2(Ω, F0) contains a smoothly embedded 2-sphere of square −2.

Proof. By Assertion 3(1), D̊−ε is contained in Ω. Hence, the double branched cover Σ2(D̊−ε, F0)
smoothly embeds in Σ2(Ω, F0). By Assertion 2, we have a diffeomorphism Σ2(D−ε, F0) ∼=
Σ2(D+ε, F0). Hence, also Σ2(D̊+ε, F0) smoothly embeds in Σ2(Ω, F0). By Assertion 1(d),
Σ2(D̊+ε, F0) contains a smoothly embedded 2-sphere of square −2 and hence so does Σ2(Ω, F0).

Assertion 8. Σ2(Ω, F1) does not contain a smoothly embedded 2-sphere of square −2.

Proof. By Assertion 3(1), Ω is contained in W . Hence, the double branched cover Σ2(Ω, F1)
smoothly embeds in Σ2(W,F1). Via radial scale, there is a diffeomorphism (W,F1) ∼= (D̊+ε, F1),
so Σ2(Ω, F1) smoothly embeds in Σ2(D+ε, F1). If Σ2(Ω, F1) contained a smoothly embedded
2-sphere of square −2, then so would Σ2(D+ε, F1), contradicting Assertion 1(e).
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Extending the construction

The goal of this chapter is to present some extensions of the construction given above.

In Section 4.1, we construct arbitrarily large tuples of pairwise exotically knotted surfaces
in B4 relative boundary. We do this for both the orientable and non-orientable case. That is,
we prove Theorem D.

In Section 4.2, we extend Theorem C to the non-orientable case, i.e. construct pairs of
exotically knotted non-orientable surfaces in B4 whose interiors remain exotically knotted. That
is, we prove Theorem E.

In Section 4.3, we first construct some tuples of exotically knotted surfaces in B4 whose
interiors remain exotically knotted. That is, we prove Theorem F.

4.1 Tuples of exotically knotted surfaces relative boundary

As mentioned above, the goal of this section is to prove:

Theorem D. Let n ∈ N. Any compact, connected surface with boundary admits a 2n-tuple of
smooth, proper embeddings in B4 that are pairwise exotically knotted relative boundary.

This result was proven for the disk in [19] by distinguishing cobordism maps on Khovanov
homology In fact, even though we use a different obstruction, the construction we present is the
same one.

Let us do this first for the disk and n = 3 and then prove the general case (which will be
essentially the same argument). The idea is to take boundary connected sums of three copies of
either D or D′ by forming sorts of windmills (see Figure 4.1 below). Since we are taking three
copies of the disks, there will be 23 = 8 possible ways to boundary connect sum them. Notice
also that the 8 resulting disks will be topologically isotopic relative boundary, as the disks D
and D′ were. We claim that these 8 disks are pairwise not smoothly isotopic relative boundary.
We argue by contradiction. Suppose that a pair of them is smoothly isotopic relative boundary.
This pair will then differ in some boundary connected summand, i.e. one will have a D where
the other has a D′. For the sake of clarity, let us say the pair is as in Figure 4.1.

Since we are assuming that this pair is smoothly isotopic relative boundary, we can attach
a band in the same way to both surfaces and the result will still be smoothly isotopic relative
boundary. We choose to attach a band as in the previous chapter. Namely, we obtain the annuli
of Figure 4.2.

41
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Figure 4.1: A pair of exotically knotted disks in B4 relative boundary.

Figure 4.2: A pair of exotically knotted annuli in B4.

Notice that the double branched cover along the annulus on the right contains the leftmost
Kirby diagram of Lemma A.3 in the appendix. Arguing as in the proof of Proposition 3.2.1,
we conclude that this double branched cover contains a smoothly embedded 2-sphere of square
−2.

However, the double branched cover along the annulus on the left decomposes as the sum
W = Σ2(B

4, D) ♮ Σ2(B
4, D) ♮ Σ2(B

4, A) and hence admits a Stein structure with ⟨c1(W ), h1⟩ =
−2, where h1 is the homology class represented by the 2-handle of Σ2(B

4, A). Since H2(W ) =
⟨h1⟩ ∼= Z, a smoothly embedded 2-sphere S with [S]2 = −2 must satisfy [S] = ±h1 and hence
⟨c1(W ), [S]⟩ = ∓2, contradicting Theorem 2.2.7. Thus, the annuli in Figure 4.2 are exotically
knotted and the pair of disks in Figure 4.1 are exotically knotted relative boundary.

Notice that the argument for a general n ∈ N is no different from this.

In order to extend this to arbitrary compact, connected orientable surfaces with boundary
we simply consider the same boundary connected sum of disks and further boundary sum with
the necessary copies of the annuli A0 and torus-with-1-hole T0 of Figure 3.8. Since the double
branched covers along A0 and T0 admit Stein structures and have Kirby diagrams shown in
Figure 3.9, our argument will descend nicely in this case.

Finally, in order to construct the non-orientable tuples, we consider the following Möbius
band M0.
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−3

Figure 4.3: The Möbius band M0 (left) and a Kirby diagram of Σ2(B
4,M0) in standard form.

Since Σ2(B
4,M0) also admits a Stein structure and its linking matrix is simply [−3], the

previous argument will descend nicely again. This concludes the proof of Theorem D.

4.2 The non-orientable case

The goal of this section is to prove:

Theorem E. Any compact, connected, non-orientable surface with boundary admits a pair
of smooth, proper embeddings in B4 that are exotically knotted. Furthermore, they remain
exotically knotted when restricted to the interior.

The idea will be the same as in Section 3.2. Let us consider the Möbius bands M and M ′

of Figure 4.4 below. Notice that even though red and blue colors do not represent a side of the
surface anymore, we keep them because they help to visualize the surface.

Figure 4.4: The Möbius bands M (left) and M ′ (right).

As always, notice that M and M ′ are topologically isotopic relative boundary, because the
disks D and D′ were.

On the other hand, notice that the double branched cover along M ′ contains a smoothly
embedded 2-sphere of square −1. Indeed, M ′ contains the Möbius band F−1 of Figure 1.13.
By the computation below that figure, Σ2(B

4, F−1) contains such a sphere and hence also does
Σ2(B

4,M ′). In particular, Theorem 2.2.7 implies that Σ2(B
4,M ′) does not admit a Stein

structure. Hence, the following lemma (which is proven in the appendix) suffices to obstruct a
smooth isotopy between M and M ′.

Lemma A.4. The double branched cover Σ2(B
4,M) has Kirby diagram:



44 CHAPTER 4. EXTENDING THE CONSTRUCTION

−1

Figure 4.5: Kirby diagram for Σ2(B
4,M).

The shown attaching sphere has tb = 0 and hence Σ2(B
4,M) admits a Stein structure.

Now, to obtain pairs of compact, connected non-orientable exotically knotted surfaces of
any topological type, we simply boundary connect sum M and M ′ with the simpler annulus A0

and Möbius band M0. The resulting surfaces will be exotically knotted by the same argument
as in Section 3.2. This completes the proof of Theorem E.

4.3 Tuples of exotically knotted surfaces

The goal of this section is to prove the following result:

Theorem F. Let g ≥ 0, h ≥ 1 ∈ N not both equalities. The compact, connected, orientable
surface with boundary with-h-holes and genus g admits a (g + 1)h-tuple of smooth, proper em-
beddings in B4 that are pairwise exotically knotted. Furthermore, they remain exotically knotted
when restricted to the interior.

We first show the weaker version:

Lemma 4.3.1. Let g ≥ 0, h ≥ 1 ∈ N not both equalities. The compact, connected, orientable
surface with boundary with-h-holes and genus g admits a (g + h)-tuple of smooth, proper em-
beddings in B4 that are pairwise exotically knotted. Furthermore, they remain exotically knotted
when restricted to the interior.

As a first step, we note that even though Σ2(B
4, A′),Σ2(B

4, T ′) contain a smoothly em-
bedded 2-sphere of square −2, they admit a Stein structures (the proof can be found in the
appendix.

Lemma A.3. The double branched covers Σ2(B
4, A′) and Σ2(B

4, T ′) have Kirby diagrams:

0

−2

0

−2

−4

Figure 4.6: Kirby diagrams for Σ2(B
4, A′) and Σ2(B

4, T ′) in standard form.

In particular, they admit Stein structures.
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As in Section 4.1, we first prove Lemma 4.3.1 for a particular case and the general proof
will be essentially the same. Suppose, for example, that g = 1 and h = 3. Our goal is then
to construct a 4-tuple of pairwise exotically knotted embeddings of the compact, connected
surface with boundary with-3-holes and genus 1 in B4. The trick is very similar to the one in
Section 4.1. Consider the surfaces depicted in Figure 4.7 below.

F1 F2

F4F3

Figure 4.7: Four exotically knotted surfaces with-3-holes and genus 1 in B4.

Again, these surfaces are topologically isotopic relative boundary, because the disks D and
D′ were. Furthermore, by Lemma A.3 the double branched covers Σ2(B

4, Fi) admit Stein
structures. The following claim will be enough to assert that the surfaces Fi are pairwise not
smoothly isotopic (not even restricting to the interiors).

Claim 4.3.2. Σ2(B
4, Fi) has exactly i−1 linearly independent homology classes in H2(W ) that

can be represented by a smoothly embedded 2-sphere of square −2.

Proof. By Lemma A.3 in the appendix, Σ2(B
4, Fi) has at least i−1 such homology classes. The

fact that there are no more than these follows by the same argument as in Section 3.2 using the
obstruction from Theorem 2.2.7.
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The argument for general g and h is the same, one just boundary connect sums with more
copies of A,A′, T and T ′. This finishes the proof of Lemma 4.3.1.

In order to prove the stronger version Theorem F, we just have to note that there are even
more homology classes that can be distinguished. Indeed, by Lemmas A.2 and A.3, the homol-
ogy classes associated to the tori, intersect non-trivially with other homology classes. Hence,
we are able not only to count the number of linearly independent homology classes that can
be represented by a smoothly embedded 2-sphere of square −2, but also the number of linearly
independent homology classes that intersect non-trivially with other classes and the number of
those that do not. A simple counting computation shows that there are (g + 1)h possibilities
that we can distinguish in this way. This proves Theorem F.

To end this section, we explain what is needed to upgrade these surfaces to exotically knotted
complex curves as we did through Sections 3.3 and 3.4.

Suppose we have fixed g and h and we have our n-tuple of exotically knotted surfaces
(F1, . . . , Fn), where n = g + h and Σ2(B

4, Fi) has exactly i− 1 linearly independent homology
classes in H2(W ) that can be represented by a smoothly embedded 2-sphere of square −2.

Since boundary connected sums of braided surfaces can be realized by stacking them verti-
cally and joining them using positive bands, the surfaces F1, . . . , Fn are positively braided and
hence can be thought of as compact pieces of complex algebraic curves in C2.

Now, we have to adapt the step of finding a suitable Fatou-Bieberbach domain. Until
Assertion 5, everything goes through without any major modifications, i.e. we find a Fatou-
Bieberbach domain Ω ⊂ C2 such that all Fi ∩ Ω are properly and holomorphically embedded
and are isotopic through homeomorphisms of C2.

In order to obstruct smooth isotopies, we again propose distinguishing the double branched
covers Σ2(Ω, Fi). This time, however, this becomes much harder than when we had only one
pair to distinguish, as we need certain control over the homology classes of Σ2(Ω, Fi). We start
by showing:

Lemma 4.3.3. Let Y m be a smooth manifold, Fm−2 a smoothly and properly embedded codi-
mension 2 submanifold and Xm ⊂ Y m a submanifold. Suppose also that

(i) H1(Y ∖ F ) ∼= H1(X ∖ F ) ∼= Z (so double covers are unique),

(ii) the inclusion F ∩X ↪→ F is a homotopy equivalence, and

(iii) the inclusion X ∖ F ↪→ Y ∖ Y is also a homotopy equivalence.

Then, the inclusion Σ2(X,F ) ↪→ Σ2(Y, F ) induces isomorphisms in homology.

Proof. To ease notation, we write F ∩X as simply F (property (ii) ensures that everything still
makes sense). Also, let X̃ denote the double cover Σ2(X,F ) ∖ F of X ∖ F and, similarly, let
Ỹ denote the double cover Σ2(Y, F ) ∖ F of Y ∖ F . Lifting X̃ → X ∖ F ↪→ Y ∖ F and using
(i) and (iii) gives a homotopy equivalence X̃ ↪→ Ỹ . We can now consider the Mayer-Vietoris
sequences associated to the decompositions Σ2(X,F ) = X̃ ∪ νF and Σ2(Y, F ) = Ỹ ∪ νF gives
a commutative diagram:

Hn(νF ∖ F ) Hn(X̃)⊕Hn(F ) Hn(Σ2(X,F )) Hn−1(νF ∖ F ) Hn−1(X̃)⊕Hn−1(F )

Hn(νF ∖ F ) Hn(Ỹ )⊕Hn(F ) Hn(Σ2(Y, F )) Hn−1(νF ∖ F ) Hn−1(Ỹ )⊕Hn−1(F )

∼= ∼= ∼= ∼=

The 5-Lemma finishes the proof.
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Applying the lemma to the inclusion of pairs (D̊−ε, Fi) ↪→ (W,Fi), we get that the inclusion
Σ2(D̊−ε, Fi) ↪→ Σ2(W,Fi) ∼=sm Σ2(D̊+ε, Fi) induces isomorphisms in homology. Since it factors

through Σ2(Ω, Fi), the isomorphism H2(Σ2(D̊−ε, Fi))
∼=−→ H2(Σ2(D̊+ε, Fi)) also factors through

H2(Ω, Fi). Hence, inclusions induce an injective map followed by a surjective map:

H2(Σ2(D̊−ε, Fi)) ↪→ H2(Ω, Fi) ↠ H2(Σ2(D̊+ε, Fi))

Since Σ2(D̊−ε, Fi) has i− 1 linearly independent homology classes in H2 that can be repre-
sented by a smoothly embedded 2-sphere of square −2, so will Σ2(Ω, Fi).

However, we have no guarantee that Σ2(Ω, Fi) has no more than i − 1 such classes, as its
second homology could potentially be larger than H2(Σ2(D̊+ε, Fi)). For that, it would suffice
that the free part of H2(Σ2(Ω, Fi) is H2(Σ2(D̊+ε, Fi)) ∼= Z2g+h−1. In order to achieve this,
further control over the choice of the Fatou-Bieberbach domain is needed. For example, by the
Lemma above, it suffices if the inclusion D̊−ε ∖Fi ↪→ Ω∖Fi is a homotopy equivalence. Hence,
we have:

Remark 4.3.4. If the Fatou-Bieberbach domain Ω ⊂ C2 above can be chosen so that the in-
clusions D̊−ε ∖ Fi ↪→ Ω ∖ Fi are homotopy equivalences, then all Fi ∩ Ω are properly and
holomorphically embedded in C2 and pairwise exotically knotted.
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Lemma A.1. A Kirby diagram of the double branched cover Σ2(B
4, D) is shown on the right

of Figure 4.8. Furthermore, the loops γ and γ′ on the left, have lifts γ̃ and γ̃′, respectively.

0

γ γ′ γ̃

γ̃′

Figure 4.8: The knot K together with two loops γ and γ′ (left). The double branched cover
Σ2(B

4, D) together with lifts of γ and γ′ (right).

Proof. We start by producing a Kirby diagram for B4∖ νD and make this diagram look like in
Lemma 1.3.8 so that we can use it without complications.

∼ ∼

0 0 0

Figure 4.9: The complement B4 ∖ νD together with a pair of loops.

Now, using Lemma 1.3.8, we obtain the Kirby diagram of Figure 4.10. Notice that the fram-
ing coefficients of both 2-handles are 0, because of Equation 1.1, where fr(hY ) = 0, wr(hX) = 2
and wr(hY ) = 1.

0 0

Figure 4.10: The double cover of B4 ∖ νD.

Notice also that by attaching a single cancelling 0-framed 2-handle to the rightmost dotted
circle of Figure 4.9, we recover B4. Hence, to the double cover of B4 ∖ νD, we just need to
remove the lift of this dotted circle to obtain a Kirby diagram of the double branched cover
Σ2(B

4, D). This way, we get Figure 4.11.
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0 0

Figure 4.11: The double branched cover Σ2(B
4, D).

The remaining steps will just consist of simplifications of this diagram. As a first step, we
obtain Figure 4.12 by sliding the pink 2-handle over the blue one using Proposition 1.2.2.

Next, we want to cancel the rightmost dotted circle with the pink 2-handle. Before doing
that, though, we need to slide the blue 2-handle over the pink one so that it does not go through
the dotted circle anymore. The result of the handle slide is given in Figure 4.13 and the result
after cancelling is pictured in Figure 4.14.

Finally, Figure 4.15 gives the isotopies that lead to the positron cork of the previous chapter.

0

0

Figure 4.12: The double branched cover Σ2(B
4, D) after one handle slide.

0

0

Figure 4.13: The double branched cover Σ2(B
4, D) after a second handle slide.
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0

Figure 4.14: The double branched cover Σ2(B
4, D) after cancelling handles.

0

0

0
0 0

0 0

(a)

(c)

(f)

(b)

(d) (e)

(g)

Figure 4.15: Isotopies showing that Σ2(B
4, D) is the positron cork.
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Lemma A.2. The following are Kirby diagrams for the double branched covers Σ2(B
4, A) and

Σ2(B
4, T ), respectively.

−2

−4

−2

Figure 4.16: Kirby diagrams of Σ2(B
4, A) (left) and Σ2(B

4, T ) (right).

Proof. We present the computation of the rightmost diagram. For the other diagram, one just
has to ignore the orange 2-handle throughout the proof. As in the previous lemma, we start by
producing a Kirby diagram of the complement B4∖νT and making it look like in Lemma 1.3.8.
This is done in Figure 4.17.

0

0

0

0

0

0

0

0

0

0

0

0

(a) (b)

(c) (d)

Figure 4.17: Equivalent Kirby diagrams of B4 ∖ νT . From (a) to (b), we have performed a
1-handle slide. The other steps are simply isotopies.

Now we can use Lemma 1.3.8 to produce a Kirby diagram of the double cover of B4 ∖ νT .
Notice that in order to recover B4 from B4 ∖ νT , we need to attach a 2-handle to cancel
the rightmost dotted circle and a 3-handle to cancel the blue 2-handle. Hence, we obtain the
following Kirby diagram diagram of Σ2(B

4, T ) after cancelling the 1-/2-handle pair:
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0

−4
−2

0

−2
−4 ∪ 3-handles

Figure 4.18: Kirby diagram of Σ2(B
4, T ) before cancelling the 2-/3-handle pair.

The following steps are simplifications of the diagram above:

−2

0

−2
−4

Figure 4.19: Kirby diagram of Σ2(B
4, T ) after cancelling the 2-/3-handle pair.

−2

−2

−4

Figure 4.20: Kirby diagrams of Σ2(B
4, T ) after sliding the blue 2-handle over the rightmost

pink one and cancelling the 1-/2-handle pair.

−2

−8

−4 −2

−2

−4

−2

−4

−2

−4

(a) (b)

(c) (d)

Figure 4.21: Equivalent Kirby diagrams of Σ2(B
4, T ). At (a), we have slid the blue 2-handle

over the pink one. At (b), we have again done that so that the blue 2-handle does not go
through the 1-handle anymore. At (c), we have cancelled the 1-/2-handle pair. The other steps
are simply isotopies.
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−2

−4

−2

−4

−2

−4

(e) (f) (g)

−2

−4

−2

−4

−2

−4 −4

−2

(h) (i)

(j) (k)

Figure 4.22: Equivalent Kirby diagrams of Σ2(B
4, T ) related by isotopies.
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Lemma A.3. The double branched covers Σ2(B
4, A′) and Σ2(B

4, T ′) have Kirby diagrams:

0

−2

0

−2

−4

Figure 4.23: Kirby diagrams for Σ2(B
4, A′) and Σ2(B

4, T ′) in standard form.

In particular, they admit Stein structures.

Proof. We present the computation for Σ2(B
4, A′), as the other is the same by adding and

tracking an extra 2-handle throughout this proof. As always, we start with a Kirby diagram of
the complement B4 ∖ νA′:

0

0 0

0

0

0

(a) (b)

(c)

Figure 4.24: Kirby diagrams of B4 ∖ νA′.

We then apply Lemma 1.3.8 and lift cancelling handles to obtain Figure 4.25 below. Now,
notice that this is exactly the same diagram as the one we had in Figure 4.11 when proving
Lemma A.1, except for the purple extra −2-framed 2-handle. Hence, in order to simplify this
diagram we follow the same steps as we did above while tracking this extra purple 2-handle.
We obtain the leftmost Kirby diagram of Figure 4.23.

Finally, both double branched covers Σ2(B
4, A′) and Σ2(B

4, T ′) admit Stein structures, as
every framing coefficient equals tb− 1, as required by Theorem 2.2.4.
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0 0

−2

0 0

−2

Figure 4.25: Kirby diagrams of Σ2(B
4, A′).

Lemma A.4. The double branched cover Σ2(B
4,M) has Kirby diagram:

−1

Figure 4.26: Kirby diagram for Σ2(B
4,M).

The shown attaching sphere has tb = 0 and hence Σ2(B
4,M) admits a Stein structure.

Proof. We start by producing a Kirby diagram of the complement B4∖νM and making it look
like in Lemma 1.3.8. This is done in Figure 4.27.
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0

0 0

0

0

0

0

0

(a) (b)

(c) (d)

Figure 4.27: Equivalent Kirby diagrams of B4 ∖ νM . From (a) to (b), we have performed a
1-handle slide. The other steps are simply isotopies.

Now we can use Lemma 1.3.8 to produce a Kirby diagram of the double cover of B4 ∖ νM .
Notice that in order to recover B4 from B4 ∖ νM , we need to attach a 2-handle to cancel
the rightmost dotted circle and a 3-handle to cancel the blue 2-handle. Hence, we obtain the
following Kirby diagram diagram of Σ2(B

4,M) after cancelling the 1-/2-handle pair:

0

−1

0

−1
∪ 3-handle

Figure 4.28: Kirby diagram of Σ2(B
4,M) before cancelling the 2-/3-handle pair.

The following steps are simplifications of the diagram above:

−1

0

−1

Figure 4.29: Kirby diagram of Σ2(B
4,M) after cancelling the 2-/3-handle pair.
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−1

−1

Figure 4.30: Kirby diagrams of Σ2(B
4,M) after sliding the blue 2-handle over the rightmost

pink one and cancelling the 1-/2-handle pair.

−1

−4

−1

−1

−1 −1

−1 −1 −1

(a) (b)

(c) (d)

(e) (f) (g)

Figure 4.31: Equivalent Kirby diagrams of Σ2(B
4,M). At (a), we have slid the blue 2-handle

over the pink one. At (b), we have again done that so that the blue 2-handle does not go
through the 1-handle anymore. At (c), we have cancelled the 1-/2-handle pair. The other steps
are simply isotopies.

Notice that the diagram (g) is isotopic to the diagram of Figure 4.26.
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